• Title/Summary/Keyword: 유동성 건축

Search Result 171, Processing Time 0.025 seconds

Fluidity and strength characteristics according to BSC(Bioinspired Self-Healing Capsule) incorporation rate (BSC(Bioinspired Self-Healing Capsule) 혼입율에 따른 모르타르의 유동성 및 강도 특성)

  • Lee, Jae-In;Kim, Chae-Young;Na, Bum-Su;Song, Won-Il;Kim, Sung-Hoon;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.253-254
    • /
    • 2022
  • In this study, as part of a study to improve the self-healing performance of concrete, the fluidity and strength characteristics of mortar mixed into cement composites were compared and analyzed by controlling the mixing rate of BSC(Bioinspired Self-Healing capsule)

  • PDF

Fluidity and strength characteristics of PCC(Powder Compacted Capsule) mixed mortar according to the type of coating material (코팅재 종류에 따른 PCC(Powder Compacted Capsule) 혼입 모르타르의 유동성 및 강도 특성)

  • Lee, Jae-In;Kim, Chae-Young;Park, Jeong-Yeon;Ji, Dong-Min;Kim, Sung-Hoon;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.255-256
    • /
    • 2022
  • As part of a study to alleviate problems caused by cracks in concrete structures, this study compares and analyzes the fluidity and strength characteristics of mortars used by adjusting the mixing ratio of two types of PCC(Powder Compacted Capsule) manufactured by different methods.

  • PDF

A Study on the Viscosity and Flowability of Polymer-Cement Composites for Repairing Cracks of RC Structures (RC 구조물의 균열 보수용 폴리머 시멘트 복합체의 점도와 유동성에 관한 연구)

  • Hong, Dae-Won;Kim, Sang-Hyuk;Kwon, Woo-Chan;Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.166-167
    • /
    • 2021
  • The purpose of this study is to evaluate the viscosity and flowability of polymer-cement composites for repairing cracks of RC structures. The viscosity and flowability of the polymer cement composites differed greatly depending on the type of polymer and the polymer cement ratio, and the polymer cement composites could be produced that could repair fine cracks in the RC structure without material separation by adjusting the proper water-cement ratio. In particular, the mixing of high viscosity EVA-modified polymer composites could be adjusted.

  • PDF

Effect of Hybrid Fibers on the Engineering Properties of HPFRCC (섬유 조합변화가 HPFRCC의 공학적 특성에 미치는 영향)

  • Han, Dongyeop;Han, Min Gheol;Kang, Byeong Hoe;Park, Yong Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.639-645
    • /
    • 2014
  • For the construction materials, concrete, as the most widely used material, is focused on its improvement of performance. Although concrete has many advantages of easiness of handling, economical benefits, and high compressive strength, low tensile strength, brittleness and drying shrinkage are reported as the drawbacks of concrete. Hence, to solve these drawbacks of concrete, many research has conducted especially using fiber-reinforced concrete technology. Especially, HPFRCC which has high volume of fiber reinforcement was suggested as a solution of these drawbacks of normal concrete with increased ductility while it has the possibility of workability loss with fiber clumping which can cause low performance of concrete. Therefore, in this paper, optimized fiber combination with either or both metal and organic fibers is suggested to provide better performance of HPFRCC in tensile strength and ductility. As the results of experiment, better workability was achieved with 1 % of single fiber rather than multiple fibers combinations, espeically, short steel fiber showed the best workability result. Furthermore, in the case of organic fibers which showed higher air content than steel fibers, higher compressive strength was achieved while lower tensile and flexural strength were shown.

Effect of Waste Marble Powder on the Fundamental Properties of High Fluidity Concrete (폐 대리석 분말을 혼입한 고유동 콘크리트의 기초적 특성에 대한 실험적 연구)

  • Lee, Yong-Moo;Shin, Sang-Yeop;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.153-160
    • /
    • 2015
  • The marble powder is a by-product that can be freely collected during the manufacturing process of marble, such as sawing, shaping, and polishing. Disposal of this waste powder is one of the environmental problems worldwide today. Therefore, this study investigated to solve this problem by consuming the waste marble powder in high fluidity concrete, as a pore filler. For this purpose, the waste marble powder was used as a binder replacing 5%, 10%, 15%, and 20% of cement in high fluidity concrete. After mixing, slump flow test, time-to-reach the slump flow of 500mm test, O-lot test and U-box test were conducted with fresh concrete. For the hardened concrete, compressive strength was determined at the age of 28 days. According to the test results, the workability of high fluidity concrete increased with the powder of 15% replacement, and the compressive strength of high fluidity concrete also increased with the same amount of powder.

A Sugeestion of Rheological Performance Range for Manufacturing Mid-workability Concrete (중유동 콘크리트 제조를 위한 레올로지 성능 범위 제안)

  • Lee, Yu-Jeong;Lee, Young-Jun;Han, Dong-Yeop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.4
    • /
    • pp.305-318
    • /
    • 2021
  • The aim of the research is providing the rheological performance range for manufacturing "mid-workability concrete". The mid-workability concrete means the normal strength range concrete mixture with high workability. Since there is not enough study or quantitative definitions on performance of the mid-workability concrete, in this research, the performance range for high workability of mid-workability concrete mixture using rheology. Because of the mixture characteristics of generally used normal strength concrete such as relatively high water-to-cement ratio and no SCMs, segregation of coarse aggregate should be prevent to achieve a successful high workability. From the experimental study in this research scope, 5 to 35 Pa.s of plastic viscosity was desirable to prevent segregation for nid-workability concrete, and general performance range with rheological parameters was provided.

Liquidity and Mechanical Properties of Concrete by Fluidity Retention Agent Mix Rate Change (유지제 혼입율 변화에 따른 콘크리트의 유동성 및 역학적 특성)

  • Park, Byung-Kwan;Choi, Sung-Yong;Pei, Chang-Chun;No, Dong-Hyun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.89-92
    • /
    • 2008
  • This research analyzed the basic characteristics of unhardened concrete and the compression strength characteristics of hardened concrete according to liquidity retention agent mix rate change to improve the liquidity fluidity retention performance of high performance concrete, and produced the following results. The moment fluidity retention agent is added according to fluidity retention agent mix rate change, which increased fluidity retention agent mix rate, slump flow decreased, and in the case of slump flow according to the progress time change by the fluidity retention agent mix rates, the more fluidity retention agent mix rate increased, the lower slump flow change rate became. The moment fluidity retention agent is added according to fluidity retention agent mix rate change, fluidity retention agent mix rate increased compared to non-mixture of fluidity retention agent, and the air amount by progress time change by the fluidity retention agent mix rates slightly increased, however target range is still met and unit volume mass is inversely proportional to air amount. Compression strength according to age progress by the fluidity retention agent mix rates was shown to increase slightly with increase in fluidity retention agent mix rate, and yet the difference was not significant.

  • PDF

The Properties of Fluidity and Compressive Strength of Unsaturated Polyester Polymer Concrete According to Replacement Ratio of Rapidly-Chilled Steel Slag Fine aggregate (급냉 제강 슬래그 잔골재 대체율에 따른 불포화 폴리에스테르 폴리머 콘크리트의 유동성 및 압축강도 특성)

  • Kim, Jae-Won;Seo, Jung-Pil;Sun, Joung-Soo;Chi, Duck-Jin;Hwang, Eui-Hwan;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.43-46
    • /
    • 2007
  • This study dealt with the influence of the replacement ratio of rapidly-chilled steel slag on fluidity and compressive strength of unsaturated polyester polymer concretes. The rapidly-chilled steel slag used in this study, a by-product which is produced by refining pig iron during the manufacture of steel, was controled by a air-jet method which rapidly cools substance melted at a high temperature. Experimental results show that fluidity and compressive strength of unsaturated polyester polymer concretes increase with increasing replacement ratio of rapidly-chilled steel slag. Use of rapidly-chilled steel slag was found to be effective for improving fluidity and compressive strength of rapidly-chilled steel slag.

  • PDF

A Study on the Properties of Latex Modified Concrete using Recycled Coarse Aggregate (재생굵은골재를 이용한 라텍스 개질 콘크리트의 특성에 관한 연구)

  • Yoo, Deok-Ryong;Go, Seong-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.147-156
    • /
    • 2006
  • This study is purposed to improve the performance of concrete made of recycled coarse aggregate. For this, recycled aggregate concrete was produced with SBR latex, and fluidity, dynamic performance and drying shrinkage were examined. According to the result, with mixing 6% of SBR latex, fluidity having resistance against segregation can be insured and compressive and flexural strength was increased. Especially the increment in terms of flexures was remarkable. In addition to, with above mixing ratio, drying shrinkage was reduced. Therefore there is a strong inference that superior recycled aggregate concrete can be produced with using 6% of SBR latex.

A Study on the Strength, Toughness and Crack Control Characteristics of Polypropylene Fiber Reinforced Concrete (폴리프로필렌 합성섬유보강 콘크리트의 강도, 인성 및 균열제어 특성 연구)

  • 오병환;한승환;차수원;백상현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.305-310
    • /
    • 1995
  • 토목 및 건축재료로서 폴리프로필렌 섬유 모르타르 및 콘크리트의 사용은 미국, 영 국 등지에서 개발되기 시작하여 많은 연구가 진행되어 왔는데, 가격이 저렴하고, 화학적인 안정성과 내구성이 우수하여 그 사용이 점차 증대되고 있는 실정이다. 이러한 폴리프로필렌 섬유의 사용은 모르타르 및 콘크리트가 건조나 냉각에 의해 수축될 때 구속에 의해 발생하 는 인장응력 및 균연을 제어하고, 인성의 증가와 충격, 마모, 피로에 대한 저항성, 내구성을 증대시키는 등의 장점을 가지는 것으로 보고되고 있다. 본 연구에서는 이러한 폴리프로필렌 섬유 모르타르 및 콘크리트의 역학적 거동특성인 압축강도, 인장강도, 인성, 유동성과 균열 특성을 실험적으로 규명하고자 하였다. 실험결과 폴리프로필렌의 혼입량이 증가할수록 압축 강도, 인장강도, 인성의 증가를 보였으나, 혼입향 0.2%를 초과할 경우 유동성, 강도 모두 감 소하는 것을 볼 수 있었다. 그리고 단섬유형 보다는 메쉬 형태의 폴리프로필렌 섬유가 역학 적 특성면에서 우수한 것으로 관찰되었으며, Kraai 방법에 의한 소성수축균열제어 특성 실 험에서 약 45% 이상으 균열감소 (0.1%혼입) 효과를 볼 수 있었다.

  • PDF