• Title/Summary/Keyword: 유공관

Search Result 81, Processing Time 0.022 seconds

A Study on the Energy Saving Hydraulic Control System using Variable Displacement Hydraulic Pump/Motor (가변 유압 펌프/모터를 이용한 유압 제어 시스템의 에너지 절감에 관한 연구)

  • 조용래;안경관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.100-108
    • /
    • 2003
  • This paper proposes a flywheel hybrid vehicle to solve the energy crisis problem by the exhaustion of a fossil fuel and air pollution for the conservation of environment. The proposed flywheel hybrid vehicle is composed of an accumulator and a flywheel as the energy generation and storage component and three variable displacement hydraulic pump/motors as the energy transfer devices. Flywheel has the characteristics of high energy density and easy energy absorption and consumption. The effectiveness of the energy-saving of the proposed flywheel hybrid vehicle is verified by simulation using Matlab/simulink. First of ail, analytical modeling for the flywheel hybrid vehicle is presented and simulations are performed based on the experimental efficiency data of a variable displacement pump/motor. The results of the simulation show that the effect of energy savings is realized by the proposed hybrid vehicle in 3 different city driving patterns.

A Study of Energy Saving Hydraulic System by A Pressure Coupling Hydrostatic Transmission (압력커플링 정유압 변속기를 이용한 에너지 절감 유압시스템에 관한 연구)

  • Do, H.T.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.9 no.1
    • /
    • pp.10-17
    • /
    • 2012
  • Nowadays, the demand of energy saving is increasing more and more while the natural resources have been exhausted. Besides, the emission gas caused by vehicles has been being a serious environment problem. Therefore, many studies have been carried out, especially focusing on braking energy regeneration, in order to save energy as well as reduce emission of mobile vehicles. In this paper, we propose a closed-loop hydrostatic transmission for braking energy regeneration with two configurations to reduce the energy consumption by recovering the braking energy. The effectiveness of the proposed system was verified by simulation. The simulation results indicated that the pressure coupling configuration gave better performance in comparison to flow coupling configuration about 40.8%, 61.7% and 53.8% reduction of fuel consumption in 10 mode, 10 mode modified profile and highway schedules, respectively.

Analysis of the Mathematical Model of a Variable Displacement Vane Pump for Engine Lubrication (엔진윤활용 가변 베인펌프의 수학적 모델 해석)

  • Truong, D.Q.;Ahn, K.K.;Lee, J.S.
    • Journal of Drive and Control
    • /
    • v.11 no.1
    • /
    • pp.14-24
    • /
    • 2014
  • Variable displacement vane-type oil pumps represent one of the most innovative pump types for industrial applications, especially for engine lubrication systems. This paper presents a complete and accurate mathematical model for a typical variable displacement vane-type oil pump. Firstly, its theoretical model is revised. Secondly, an analysis of power loss factors of this pump type is carefully investigated to optimize the modeling accuracy. Finally, the estimated pump performance using the complete pump model is verified by numerical simulations in comparison with the practical tests.

Development of a mathematic model for a variable displacement vane pump for engine oil (엔진오일용 가변 베인펌프의 수학적 모델 개발)

  • Truong, D.Q.;Ahn, K.K.;Yoon, J.I.;Lee, J.S.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.42-51
    • /
    • 2012
  • Variable displacement vane-type oil pumps represent one of the most innovative pump types for industrial applications, especially for engine lubrication systems. This paper deals with a modeling method for theoretical flow rate investigation of a typical variable displacement vane-type oil pump. This theoretical model is based on the pump geometric design and dynamic analyses. It can be considered as mandatory steps for a deeper understanding of the pump operation as well as for effectively implementing the pump control mechanisms to satisfy the urgent demands of engine lubrication systems. The developed pump model is finally illustrated by numerical simulations.

Position Control of Electro Hydraulic Actuator (EHA) using an Iterative Learning Control (반복 학습제어를 이용한 전기유압액추에이터의 위치제어)

  • Nam, D.N.C.;Tri, N.M.;Park, H.G.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • This paper presents the development of a compact position generator to be used for industrial purposes based on a pump controlled Electro-Hydraulic Actuator (EHA), which is closed-loop controlled by an embedded based Iterative PID controller. The controller is designed by combining the PID controller and the iterative learning scheme to perform tracking control for periodically desired references. Control algorithm is implemented on an embedded computer (AD 7011-EVA) which makes the implementation and application in industrial environments easier.

Optimal Design of a Quick-Acting Hydraulic Fuse using Genetic Algorithm and Complex Method (유전자 알고리즘과 콤플렉스법에 의한 고성능 유압휴즈의 최적 설계)

  • Lee, S.R.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.32-38
    • /
    • 2014
  • The hydraulic fuse, which responds to the suddenly increased flow on rupture of a line and shuts off the fluid flow, would prevent large spillage of liquid. The quick-acting hydraulic fuse, which is mainly composed of a poppet, a seat, and a spring, must be designed to minimize the leaked flow and to prevent high collision speed between the poppet and seat during fuse operation on a line rupture. The optimal design parameters of a quick-acting hydraulic fuse were searched using the genetic algorithm and the complex method that are kinds of constrained direct search methods. The dynamic behavior of a quick-acting hydraulic fuse was researched using computer simulations that applied the obtained optimal design parameters.

Position control of Electro hydrostatic actuator (EHA) using a modified back stepping controller (백스테핑제어기를 이용한 전기유압액추에이터의 위치제어)

  • Nam, D.N.C.;Yoon, J.I.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.9 no.3
    • /
    • pp.16-22
    • /
    • 2012
  • Nowadays, electro hydrostatic actuator (EHA) has shown great advantages over the conventional hydraulic actuators with valve control system. This paper presents a position control for an EHA using a modified back stepping controller. The controller is designed by combining a backstepping technique and adaptation laws via special Lyapunov functions. The control signal consists of an adaptive control signal to compensate for the nonlinearities and a simple robust structure to deal with a bounded disturbance. Experiments are carried out to investigate the effectiveness of the proposed controller.

Modeling and Performance Investigation of Forklift Transmission Control Valve System (지게차 변속제어밸브의 모델링 및 성능 검증)

  • Truong, D.Q.;Ahn, K.K.;Yoon, J.W.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2014
  • In forklifts, the machine performance is largely depended on the transmission performance. The aim of this paper is to develop a complete model of transmission control valve (TMV) system of a typical forklift using AMESim simulation tool. By using the developed TMV model, it becomes easy to investigate the system concept, working principle, and performance. In addition, an optimization on the TMV structure can be achieved by using this model with tunable parameters. Simulations have been carried out in a comparison with the actual experiments to verify the model.

Extended-State-Observer-Based Nonlinear Servo Control of An Electro-Hydrostatic Actuator (전기-정유압 구동기의 확장 상태 관측기 기반 비선형 서보 제어)

  • Jun, Gi Ho;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.61-70
    • /
    • 2017
  • In this study, an extended-state-observer (ESO) based non-linear servo control is introduced for an electro-hydrostatic actuator (EHA). Almost hydraulic systems not only are highly non-linear system that has mismatched uncertainties and external disturbances, but also can not measure some states. ESO that only use an output signal can be used to compensate these uncertainties and estimate unmeasurable states. To improve the position tracking performance, the barrier Lyapunov function (BLF) that can guarantee an output tolerance is introduced for the position tracking error signal of back stepping control procedures. Finally, the proposed servo control is compared with the proportional-integral (PI) control.

Development of an Unmanned Test System Based on Forklift for Mast Operation Durability (지게차 마스트 작동내구를 위한 실차 기반 무인시험장치 개발)

  • Cho, Jae-Hong;Na, Seon-Jun;Kim, Min-Seok;Park, Myeong-Kwan
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.70-76
    • /
    • 2022
  • In this paper, we develops an unmanned test system for the purpose of realizing an actual forklift-based test-bed for the operation durability of the forklift mast. First, two robot actuators were applied to the lever to replace lever manipulation of the operator. For detecting the height of the fork and the tilt angle of the mast, the laser displacement sensor and the inclinometer were installed to the forklift. Next, the embedded control system was used to control the robot actuator with reference to test mode. Experimental evaluation verified that developed test system was effective and practical for the viewpoint of the repeatability of the test mode.