Browse > Article
http://dx.doi.org/10.7839/ksfc.2017.14.4.061

Extended-State-Observer-Based Nonlinear Servo Control of An Electro-Hydrostatic Actuator  

Jun, Gi Ho (Graduate School of Mechanical Engineering, University of Ulsan)
Ahn, Kyoung Kwan (Department of Mechanical Engineering, University of Ulsan,)
Publication Information
Journal of Drive and Control / v.14, no.4, 2017 , pp. 61-70 More about this Journal
Abstract
In this study, an extended-state-observer (ESO) based non-linear servo control is introduced for an electro-hydrostatic actuator (EHA). Almost hydraulic systems not only are highly non-linear system that has mismatched uncertainties and external disturbances, but also can not measure some states. ESO that only use an output signal can be used to compensate these uncertainties and estimate unmeasurable states. To improve the position tracking performance, the barrier Lyapunov function (BLF) that can guarantee an output tolerance is introduced for the position tracking error signal of back stepping control procedures. Finally, the proposed servo control is compared with the proportional-integral (PI) control.
Keywords
Extended State Observer; Electro-hydrostatic Actuator; Barrier Lyapunov Function(BLF); Nonlinear Servo Control;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Guo, Q., T. Yu and D. Jiang (2015). "Robust $H{\infty}$ positional control of 2-DOF robotic arm driven by electro-hydraulic servo system." ISA Transactions 59(Supplement C): 55-64.   DOI
2 Pi, Y. and X. Wang (2011). "Trajectory tracking control of a 6-DOF hydraulic parallel robot manipulator with uncertain load disturbances." Control Engineering Practice 19(2): 185-193.   DOI
3 Alle, N., S. S. Hiremath, S. Makaram, K. Subramaniam and A. Talukdar (2016). "Review on electro hydrostatic actuator for flight control." International Journal of Fluid Power 17(2): 125-145.   DOI
4 Rongjie, K., J. Zongxia, W. Shaoping and C. Lisha (2009). "Design and Simulation of Electro-hydrostatic Actuator with a Built-in Power Regulator." Chinese Journal of Aeronautics 22(6): 700-706.   DOI
5 Cetin, S. and A. V. Akkaya (2010). "Simulation and hybrid fuzzy-PID control for positioning of a hydraulic system." Nonlinear Dynamics 61(3): 465-476.   DOI
6 Truong, D. Q., K. K. Ahn, K. J. Soo and Y. H. Soo (2007). Application of Fuzzy-PID Controller in Hydraulic Load Simulator. 2007 International Conference on Mechatronics and Automation.
7 Ahn, K. K., D. N. C. Nam and M. Jin (2014). "Adaptive Backstepping Control of an Electrohydraulic Actuator." IEEE/ASME Transactions on Mechatronics 19(3): 987-995.   DOI
8 Bonchis, A., P. I. Corke, D. C. Rye and Q. P. Ha (2001). "Variable structure methods in hydraulic servo systems control." Automatica 37(4): 589-595.   DOI
9 Guan, C. and S. Pan (2008). "Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters." Control Engineering Practice 16(11): 1275-1284.   DOI
10 Yao, J., Z. Jiao and S. Han (2013). "Friction compensation for low velocity control of hydraulic flight motion simulator: A simple adaptive robust approach." Chinese Journal of Aeronautics 26(3): 814-822.   DOI
11 Yao, J., Z. Jiao and D. Ma (2014). "Extended-State-Observer-Based Output Feedback Nonlinear Robust Control of Hydraulic Systems With Backstepping." IEEE Transactions on Industrial Electronics 61(11): 6285-6293.   DOI
12 Wang, D., L. Zheng, H. Yu, W. Zhou and L. Shao (2016). "Robotic excavator motion control using a nonlinear proportional-integral controller and cross-coupled pre-compensation." Automation in Construction 64(Supplement C): 1-6.   DOI
13 Kim, D., J. Kim, K. Lee, C. Park, J. Song and D. Kang (2009). "Excavator tele-operation system using a human arm." Automation in Construction 18(2): 173-182.   DOI
14 Yao, J., Z. Jiao, D. Ma and L. Yan (2014). "High-Accuracy Tracking Control of Hydraulic Rotary Actuators With Modeling Uncertainties." IEEE/ASME Transactions on Mechatronics 19(2): 633-641.   DOI
15 Ba, D. X., K. K. Ahn, D. Q. Truong and H. G. Park (2016). "Integrated model-based backstepping control for an electro-hydraulic system." International Journal of Precision Engineering and Manufacturing 17(5): 565-577.   DOI
16 Freidovich, L. B. and H. K. Khalil (2006). Robust Feedback Linearization using Extended High-Gain Observers. Proceedings of the 45th IEEE Conference on Decision and Control.
17 H. K. Khalil, Nonlinear Systems 3rd ed., Prentice Hall, New Jersey, pp.610-623, 2002
18 Khalil, H. K. and L. Praly (2014). "High-gain observers in nonlinear feedback control." International Journal of Robust and Nonlinear Control 24(6): 993-1015.   DOI
19 Sirouspour, M. R. and S. E. Salcudean (2001). "Nonlinear control of hydraulic robots." IEEE Transactions on Robotics and Automation 17(2): 173-182.   DOI
20 Won, D., W. Kim, D. Shin and C. C. Chung (2015). "High-Gain Disturbance Observer-Based Backstepping Control With Output Tracking Error Constraint for Electro-Hydraulic Systems." IEEE Transactions on Control Systems Technology 23(2): 787-795.   DOI
21 Boaventura, T., J. Buchli, C. Semini and D. G. Caldwell (2015). "Model-Based Hydraulic Impedance Control for Dynamic Robots." IEEE Transactions on Robotics 31(6): 1324-1336.   DOI