• 제목/요약/키워드: 위치 템플릿 매칭

검색결과 46건 처리시간 0.032초

차량 헤드라이트 불량검사 방법 (Inspection of Vehicle Headlight Defects)

  • 김근홍;문창배;김병만;오득환
    • 한국산업정보학회논문지
    • /
    • 제23권1호
    • /
    • pp.87-96
    • /
    • 2018
  • 본 논문에서는 차량 헤드라이트의 불량 유무를 판별하기 위하여 생산된 헤드라이트 이미지를 위치 및 회전 보정 후 검사이미지의 ROI(Region of Interest)와 표준 이미지의 ROI와의 유사도를 이용하여 불량 유무를 판단하는 방법을 제안하였다. 유사도 판별은 OpenCV에서 제공하는 템플릿매칭 유사도 판별방법을 응용하여 히스토그램 기반에서 유사도를 판별하는 방법을 사용하였고, 성능 분석을 목적으로 기존 OpenCV의 기본 방법과 비교하였다. 분석결과, OpenCV의 기본 방법보다 좋은 성능을 보임을 알 수 있었고, 제안 방법의 경우 불량 판별율 100%에 근접함을 알 수 있었다.

외팔 보를 이용한 Location Template Matching 방법을 적용함에 있어서 격자간격의 영향 분석 (Analysis of the Effect of the Grid Spacing on the Application of the Location Template Matching Method Using a Cantilever Beam)

  • 신기홍
    • 한국소음진동공학회논문집
    • /
    • 제26권5호
    • /
    • pp.609-615
    • /
    • 2016
  • Measuring similarity between two signals is a key element of the location template matching (LTM) method which is one of impact source localization technique. As a measure of similarity, the correlation coefficient is most widely used, and the group delay based method is recently proposed to improve the accuracy of finding the impact source. In practice, the LTM method assumes that the similarity between two signals decreases as the distance between two corresponding impact points increases, where the distance between two neighboring impact points defines the grid spacing. In this paper, it is shown that this assumption is not always true but the correlation coefficients fluctuate forming a main robe and many side robes as the distance between two neighboring impact points increases. On the other hand, the standard deviation of group delay sharply increases with a small increase of the grid spacing. These are demonstrated by using a simple cantilever beam. Based on these findings, an optimal way of implementing the LTM method may be suggested by combining the correlation coefficient and the group delay based approaches.

열림방향을 이용한 자동차번호판 숫자인식 (Digit Recognition for Vehicle License Plate Based on Opened Enclosure)

  • 유쟁;김동욱
    • 한국정보전자통신기술학회논문지
    • /
    • 제8권6호
    • /
    • pp.453-459
    • /
    • 2015
  • 본 논문에서는 열림부분에 기반을 둔 자동차 번호판의 숫자인식 기법을 제안한다. 제안된 인식기법에서 숫자를 상부와 하부로 나누고, 각각에 대해 열림부분을 판정하여 숫자를 인식한다. 제안된 기법에서, 상부와 하부의 분할은 정해진 절단선을 바탕으로 하며, 교점의 개수에 따라 절단선의 위치가 조절된다. 제안된 방법은 템플릿 매칭 방법에 비해 잡음이나 회전 등의 영향을 받지 않으며 강건하다. 모의실험에서 제안된 기법의 성능을 평가하기 위해 번호판에 사용되는 숫자들에 대해 처리를 하고, 그 결과를 제시하였다. 제안된 기법은 번호판의 숫자인식에서 매우 높은 인식률을 보인다.

다중 이진화를 이용한 컨테이너 BIC 부호 영역 추출 및 인식 방법 (Container BIC-code region extraction and recognition method using multiple thresholding)

  • 송재욱;정나라;강현수
    • 한국정보통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.1462-1470
    • /
    • 2015
  • 컨테이너 BIC-code란 국제 운송 및 복합적인 운송환경에서의 편의성을 위해 사용하고 있는 약속된 규약이다. BIC-code는 해상운송 컨테이너의 식별 부호이며 국가 code와 다양한 조작 등의 내용을 포함하고 있다. 해가 거듭될수록 항공, 해양을 통한 물류운송은 계속 증가하고 있으며 이에 따라 해당 물류를 처리하는 항만에서는 신속하고 정확한 처리가 요구되고 있다. 따라서 본 논문에서는 컨테이너의 BIC-code를 다중 이진화를 통해 영역을 추출하고 개별 code를 인식하는 방법을 제안한다. 코드 인식에 있어서, 기후 요소, 빛, 카메라 위치, 컨테이너의 색과 같은 다양한 요인으로 인해 고정된 임계값을 사용할 수 없다. 따라서 제안된 방법에서는 각 영상에 대해 다양한 임계값으로 인식을 수행하여 가장 우수한 인식 결과를 선택한다. 각 임계값에 대한 이진화, 레이블링, close연산을 통해 BIC-code의 가로, 세로 여부를 판단하여 잡음을 제거하고, 개별 code를 분리한다. 분리된 개별 code는 데이터베이스의 기본 자료와 템플릿 매칭을 통해 인식한다. 각 임계값에 대한 인식결과의 신뢰도를 측정하여 가장 신뢰도가 높은 결과를 선택하게 된다. 실험 결과를 통해 제안한 방법이 조명상황에 관계없이 컨테이너 BIC-code를 효과적으로 추출하고 인식함을 보인다.

Adaboost와 깊이 맵 기반의 블록 순위 패턴의 템플릿 매칭을 이용한 얼굴검출 (Face Detection Using Adaboost and Template Matching of Depth Map based Block Rank Patterns)

  • 김영곤;박래홍;문성수
    • 방송공학회논문지
    • /
    • 제17권3호
    • /
    • pp.437-446
    • /
    • 2012
  • 흑백 혹은 컬러 영상과 같은 2차원 정보를 사용한 얼굴 검출 알고리즘에 관한 연구가 수십 년 동안 이루어져 왔다. 최근에는 저가 range 센서가 개발되어, 이를 통해 3차원 정보 (깊이 정보: 카메라와 물체사이의 거리를 나타냄)를 손쉽게 이용함으로써 얼굴의 특징을 높은 신뢰도로 추출하는 것이 가능해졌다. 대부분 사람 얼굴에는 3차원적인 얼굴의 구조적인 특징이 있다. 본 논문에서는 흑백 영상과 깊이 영상을 사용하여 얼굴을 검출하는 알고리즘을 제안한다. 처음에는 흑백 영상에 adaboost를 적용하여 얼굴 후보 영역을 검출한다. 얼굴 후보 영역의 위치에 대응되는 깊이 영상에서의 얼굴 후보 영역을 추출한다. 추출된 영역의 크기를 $5{\times}5$ 영역으로 분할하여 깊이 값의 평균값을 구한다. 깊이 값들의 평균값들 간에 순위를 매김으로써 블록 순위 패턴이 생성된다. 얼굴 후보 영역의 블록 순위 패턴과 학습 데이터를 사용하여 미리 학습된 템플릿 패턴을 매칭함으로써 최종 얼굴 영역인지 아닌지를 판단할 수 있다. 제안하는 방법의 성능을 Kinect sensor로 취득한 실제 영상으로 실험하였다. 실험 결과 true positive를 잘 보존하면서 많은 false positive들을 효과적으로 제거하는 것을 보여준다.

편대비행 표적식별을 위한 효과적인 ISAR 영상 합성 방법 (Efficient Fusion Method to Recognize Targets Flying in Formation)

  • 김민;강기봉;정주호;김경태;박상홍
    • 한국전자파학회논문지
    • /
    • 제27권8호
    • /
    • pp.758-765
    • /
    • 2016
  • 본 논문에서는 편대비행 중인 다수의 표적을 식별하기 위하여 기존의 표적들을 분리시키는 기법을 이용하는 대신 PSO(Particle Swarm Optimization) 알고리즘을 이용하여 미리 학습되어 있던 각 표적의 역합성 개구면 레이다(Inverse Synthetic Aperture Radar: ISAR) 영상들을 합성하는 방법을 제안한다. 제안된 기법에서 ISAR 영상의 합성은 표적의 수와 관측 각도 및 표적의 위치를 변수로 하는 비선형문제를 최적화함으로써 수행된다. 추적 레이다를 통하여 관측 각도가 추정 됨을 가정한 후, 표적의 수와 위치는 PSO로 템플릿 매칭(template matching)을 최적화 하여 추정된다. 축소된 크기의 F-16을 사용한 시뮬레이션 결과, 편대비행 중인 표적들의 ISAR 영상과 동일한 ISAR 영상이 합성됨으로써 제안된 기법의 효용성이 검증되었다.

시각적 주의 및 Spot-Lights 영역 검출 기반의 교통신호등 검출 방안 (Traffic Lights Detection Based on Visual Attention and Spot-Lights Regions Detection)

  • 김종배
    • 전자공학회논문지
    • /
    • 제51권6호
    • /
    • pp.132-142
    • /
    • 2014
  • 근래에 고령운전자의 증가와 다양한 차량용 멀티미디어 기기의 등장으로 운전 중 운전자의 시각적 주의 결핍 및 분산되어 교통신호등 오인식으로 인해 교통사고가 증가하고 있는 상황이다. 이를 보완하기 위해 일반적인 교통신호등 검출연구들은 색상 임계치, 템플릿 매칭, 학습기 기반 등의 방안이 제시 되었으나 색상 임계치의 경우 시내 도로와 같이 복잡한 배경과 주위 환경변화에 강인하지 못하고, 야간 시간대의 경우 템플릿 및 학습기 기반의 검출방안의 경우 그 인식도가 떨어지는 문제점이 존재한다. 따라서 제안한 방안에서는 교통신호등의 구조적인 형태 정보(모양, 밝기, 대비, 색상 등)을 기반 한 시각적 주의 영역과 spot-lights 영역 검출을 통해 복잡한 시내 도로 환경에서 교통신호등을 검출하는 방안을 제안한다. 교통신호등은 운전자의 시인성을 높일 수 있는 위치에 설치되고 또한 구조적인 고유한 형태와 색상을 지니고 있는 특징들을 이용하여 교통신호등을 검출한다. 제안한 방안에서는 입력된 칼라영상에서 특징정보들 간의 다차원 가우시안 파라미드 영상들을 생성하고 각 영상들 간의 대비차이 계산하여 현저하게 두드러진 영역들을 검출하고, 밝기 영상에서 주위 영역과 현저하게 밝은 spot-lights 영역들을 검출한다. 그리고 검출된 두 영역들의 모양과 색상 분석을 통해 교통신호등을 검출한다. 제안한 방법을 다양한 시간대와 시내 도로에서 실험한 결과, 교통신호등 검출률은 83.2%이고 프레임 당 처리 시간은 0.68초이다. 이것을 통해 사후판독 기능이 차량 영상기록장치에 결합한 안전운전 지원시스템으로 제안한 방안이 유용하게 적용될 수 있음을 알 수 있다.

환경변화에 강인한 눈 영역 분리 및 안구 추적에 관한 연구 (Robust Eye Region Discrimination and Eye Tracking to the Environmental Changes)

  • 김병균;이왕헌
    • 한국정보통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.1171-1176
    • /
    • 2014
  • 안구 추적은 눈동자의 움직임을 감지하여 안구의 운동 상태나 시선의 위치를 추적하는 인간과 컴퓨터의 상호작용(HCI)분야이다. 안구 추적은 사용자의 시선 추적을 이용한 마케팅 분석이나 의도 인식 등에 적용되고 있으며 다양한 적용을 위한 많은 연구가 진행되고 있다. 안구 추적을 수행하는 방법 중에 영상처리를 이용한 안구 추적 방법이 사용자에게는 편리하지만 조명의 변화와 스케일 변화 그리고 회전이나 가려짐에는 추적의 어려움이 있다. 본 논문에서는 이미지 기반의 안구 추적시 발생되는 조명, 회전, 스케일 변화 등 환경변화에도 강인하게 안구 추적을 수행하기 위하여 두 단계의 추적 방법을 제안한다. 우선 Haar분류기를 이용하여 얼굴과 안구 영역을 추출하고, 추출된 안구 영역으로부터 CAMShift과 템플릿 매칭을 이용하여 강인하게 안구를 추적하는 두 단계의 안구 추적 방법을 제안하였다. 제안한 알고리즘은 조명 변화, 회전, 스케일 등 변화하는 환경 조건하에서 실험을 통하여 강인성을 증명하였다.

구조화된 환경에서의 가중치 템플릿 매칭을 이용한 자율 수중 로봇의 비전 기반 위치 인식 (Vision-based Localization for AUVs using Weighted Template Matching in a Structured Environment)

  • 김동훈;이동화;명현;최현택
    • 제어로봇시스템학회논문지
    • /
    • 제19권8호
    • /
    • pp.667-675
    • /
    • 2013
  • This paper presents vision-based techniques for underwater landmark detection, map-based localization, and SLAM (Simultaneous Localization and Mapping) in structured underwater environments. A variety of underwater tasks require an underwater robot to be able to successfully perform autonomous navigation, but the available sensors for accurate localization are limited. A vision sensor among the available sensors is very useful for performing short range tasks, in spite of harsh underwater conditions including low visibility, noise, and large areas of featureless topography. To overcome these problems and to a utilize vision sensor for underwater localization, we propose a novel vision-based object detection technique to be applied to MCL (Monte Carlo Localization) and EKF (Extended Kalman Filter)-based SLAM algorithms. In the image processing step, a weighted correlation coefficient-based template matching and color-based image segmentation method are proposed to improve the conventional approach. In the localization step, in order to apply the landmark detection results to MCL and EKF-SLAM, dead-reckoning information and landmark detection results are used for prediction and update phases, respectively. The performance of the proposed technique is evaluated by experiments with an underwater robot platform in an indoor water tank and the results are discussed.

차량의 위치 파악을 위한 도로안내표지판 인식과 거리정보 습득 방법 (An Recognition and Acquisition method of Distance Information in Direction Signs for Vehicle Location)

  • 김현태;정진성;장영민;조상복
    • 전자공학회논문지
    • /
    • 제54권1호
    • /
    • pp.70-79
    • /
    • 2017
  • 본 논문에서는 도로안내표지판 내의 거리정보를 빠르고 정확하게 획득하는 방법을 제안한다. 제안된 방법은 표지판의 인식, 거리를 획득하기 용이한 전 처리 과정, 거리정보를 습득하는 것으로 구성된다. 표지판의 인식은 여러 가지 잡음을 해결하기 위해 감마 보정을 포함한 색상검출을 사용하였으며, 거리정보를 용이하게 획득하기 위해서 직선 인자를 이용한 기울기 보정과 고속 푸리에변환을 이용한 해상도 보정을 적용하였다. 거리정보를 습득하는 과정은 모폴로지 연산을 통해 영역을 부각하고 레이블링, 템플릿 매칭을 사용하였다. 이러한 과정을 통해 도로안내표지판의 거리정보를 습득하여 분기점까지 남은 거리를 출력하는 시스템을 제안하였다. 결과적으로 연산속도 개선에 중점을 두어 실시간으로 처리할 수 있는 시스템에 사용 가능하며, 그 결과 프레임 당 평균 0.46초의 속도를 가지며, 정확도에서도 유사도 0.65의 수치를 갖는다.