• Title/Summary/Keyword: 위치 및 방향 센서

Search Result 216, Processing Time 0.031 seconds

A Study of the Apply Proximity Sensor for Improved Reliability Axle Detection (열차 차축검지 신뢰성 향상을 위한 근접센서 방식 Axle Counter 적용 연구)

  • Park, Jae-Young;Choi, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5534-5540
    • /
    • 2015
  • This In the railway signaling system, applications of axle counter in addition to track circuit goes on increasing for detecting train position. Consequently, this paper compares sensor methods of axle counter with between geo-magnetism method and proximity sensor method. And it presents differences and results, to improve reliabilities of train detection and axle counting. Also, this article presents an applied result which is based on field experience, with regard to installation, considering attachment condition of sensor part for accurate axle counting. This study acquires expandability that is able to perform not only axle counting function but also various other functions (direction detection of train, speed detection of train, and so on). It was a result of a change of design in order to judge phase difference of sensors, to improve reliability of axle counting. Furthermore, it does not subordinate to characteristics (type, weight of train). And it is confirmed that the omission of axle counting was not occurred in 350km/h. This was the result of Lab test after the construction of transfer equipment of trial axle and Test Bed for axle counting. Both of them are self-productions. Through this, it prepares foundation which is able to apply not only to train detection but also to speed of passing trains, formation number of trains, detector locking condition - when the train passes the section of switch point, and level crossing devices. Furthermore, it would be judged to contribute safety train operation if proximity sensor method applies to the whole railway signaling system from now on.

The study of collimator and radiation shield for the detection of the gamma-ray distribution (감마선 분포탐지를 위한 조사구 및 차폐체에 관한 연구)

  • Hwang, Young-gwan;Lee, Nam-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.944-945
    • /
    • 2016
  • Gamma-ray Detector for gamma-ray imaging device is composed of a shielding body for shielding gamma-rays incident from the radiation source. Distribution of the gamma ray can be represented by the distribution information on the direction in which the detecting section and the signal through the incident hole of collimator. The role of the shield is important because all signals should be treated as noise except for the signal from the incident hole.In this paper In this paper, we have produced a compact, lightweight and Collimator shield by changing the structure and physical properties with respect to the collimator and shielding of lead-based gamma-ray detectors. And we analyzed the shielding effectiveness relative to the incident gamma ray sphere measured signal value through the gamma irradiation test facility. The results confirmed that the production and Collimator shielding the imaging device Implementing more efficient to implement.

  • PDF

Improving Precision of the Exterior Orientation and the Pixel Position of a Multispectral Camera onboard a Drone through the Simultaneous Utilization of a High Resolution Camera (고해상도 카메라와의 동시 운영을 통한 드론 다분광카메라의 외부표정 및 영상 위치 정밀도 개선 연구)

  • Baek, Seungil;Byun, Minsu;Kim, Wonkook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.541-548
    • /
    • 2021
  • Recently, multispectral cameras are being actively utilized in various application fields such as agriculture, forest management, coastal environment monitoring, and so on, particularly onboard UAV's. Resultant multispectral images are typically georeferenced primarily based on the onboard GPS (Global Positioning System) and IMU (Inertial Measurement Unit)or accurate positional information of the pixels, or could be integrated with ground control points that are directly measured on the ground. However, due to the high cost of establishing GCP's prior to the georeferencing or for inaccessible areas, it is often required to derive the positions without such reference information. This study aims to provide a means to improve the georeferencing performance of a multispectral camera images without involving such ground reference points, but instead with the simultaneously onboard high resolution RGB camera. The exterior orientation parameters of the drone camera are first estimated through the bundle adjustment, and compared with the reference values derived with the GCP's. The results showed that the incorporation of the images from a high resolution RGB camera greatly improved both the exterior orientation estimation and the georeferencing of the multispectral camera. Additionally, an evaluation performed on the direction estimation from a ground point to the sensor showed that inclusion of RGB images can reduce the angle errors more by one order.

An Efficient Interferometric Radar Altimeter (IRA) Signal Processing to Extract Precise Three-dimensional Ground Coordinates (정밀 3차원 지상좌표 추출을 위한 IRA의 효율적인 신호처리 기법)

  • Lee, Dong-Taek;Jung, Hyung-Sup;Yoon, Geun-Won
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.507-520
    • /
    • 2011
  • Conventional radar altimeter system measured directly the distance between the satellite and the ocean surface and frequently used by aircraft for approach and landing. The radar altimeter is good at flat surface like sea whereas it is difficult to determine precise three dimensional ground coordinates because the ground surface, unlike ocean, is very indented. To overcome this drawback of the radar altimeter, we have developed and validated the interferometric radar altimeter signal processing which is combined with new synthetic aperture and interferometric signal processing algorithm to extract precise three-dimensional ground coordinates. The proposed algorithm can accurately measure the three dimensional ground coordinates using three antennas. In a set of 70 simulations, the averages of errors in x, y and z directions were approximately -0.40 m, -0.02 m and 4.22 m, respectively and the RMSEs were about 3.40 m, 0.30 m and 6.20 m, respectively. The overall results represent that the proposed algorithm is effective for accurate three dimensional ground positioning.

Numerical Study on the Observational Error of Sea-Surface Winds at leodo Ocean Research Station (수치해석을 이용한 이어도 종합해양과학기지의 해상풍 관측 오차 연구)

  • Yim Jin-Woo;Lee Kyung-Rok;Shim Jae-Seol;Kim Chong-Am
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.3
    • /
    • pp.189-197
    • /
    • 2006
  • The influence of leodo Ocean Research Station structure to surrounding atmospheric flow is carefully investigated using CFD techniques. Moreover, the validation works of computational results are performed by the comparison with the observed data of leodo Ocean Research station. In this paper, we performed 3-dimensional CAD modelling of the station, generated the grid system for numerical analysis and carried out flow analyses using Navier-Stokes equations coupled with two-equation turbulence model. For suitable free stream conditions of wind speed and direction, the interference of the research station structure on the flow field is predicted. Beside, the computational results are benchmarked by observed data to confirm the accuracy of measured date and reliable data range of each measuring position according to the wind direction. Through the results of this research, now the quantitative evaluation of the error range of interfered gauge data is possible, which is expected to be applied to provide base data of accurate sea surface wind around research stations.

Verification of Spatial Resolution in DMC Imagery using Bar Target (Bar 타겟을 이용한 DMC 영상의 공간해상력 검증)

  • Lee, Tae Yun;Lee, Jae One;Yun, Bu Yeol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.485-492
    • /
    • 2012
  • Today, a digital airborne imaging sensor plays an important role in construction of the numerous National Spatial Data Infrastructure. However, an appropriate quality assesment procedure for the acquired digital images should be preceded to make them useful data with high precision and reliability. A lot of studies therefore have been conducted in attempt to assess quality of digital images at home and abroad. In this regard, many test fields have been already established and operated to calibrate digital photogrammetric airborne imaging systems in Europe and America. These test fields contain not only GCPs(Ground Control Points) to test geometric performance of a digital camera but also various types of targets to evaluate its spatial and radiometric resolution. The purpose of this paper is to present a method to verify the spatial resolution of the Intergraph DMC digital camera and its results based on an experimental field testing. In field test, a simple bar target to be easily identified in image is used to check the spatial resolution. Images, theoretically designed to 12cm GSD(Ground Sample Distance), were used to calculate the actual resolution for all sub-images and virtual images in flight direction as well as in cross flight direction. The results showed that the actual image resolution was about 0.6cm worse than theoretically expected resolution. In addition, the greatest difference of 1.5cm between them was found in the image of block edge.

A Study on Automatic Correction Method of Electronic Compass Deviation Using the Geostationary Satellite Azimuth Information (정지위성 방위각 정보를 활용한 전자 컴퍼스 편차 자동보정기법 연구)

  • Lee, Jae-Won;Lee, Geon-Ho
    • Journal of Navigation and Port Research
    • /
    • v.41 no.4
    • /
    • pp.189-194
    • /
    • 2017
  • The Moving Search Radar System (MSRS) monitors sea areas by moving along the coast. Since the radar is initially aligned to the front of the vehicle, it is important to know the changes in the heading azimuth of the vehicle to quickly acquire the target azimuth from the radar after the MSRS has moved. The heading azimuth can be obtained using the gyro compass, the GPS compass or the electronic compass. The electronic compass is suitable for MSRS requiring fast maneuverability due to its small volume, short stabilization time and low price. However, using a geomagnetic sensor may result in an error due to the surrounding magnetic field. Errors can make early automatic tracking of the satellites difficult and can reduce the radar detection accuracy. Therefore, this paper proposes a method to automatically compensate for the error reflecting the correction value on the radar obtained by comparing the reference azimuth calculated by solving the geodesic inverse problem using two coordinates between the radar and the geostationary satellite with the actually-directed azimuth angle of the satellite antenna. The feasibility and convenience of the proposed method were verified by applying it to the MSRS in the field.

Preceding Vehicle Detection and Tracking with Motion Estimation by Radar-vision Sensor Fusion (레이더와 비전센서 융합기반의 움직임추정을 이용한 전방차량 검출 및 추적)

  • Jang, Jaehwan;Kim, Gyeonghwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.265-274
    • /
    • 2012
  • In this paper, we propose a method for preceding vehicle detection and tracking with motion estimation by radar-vision sensor fusion. The motion estimation proposed results in not only correction of inaccurate lateral position error observed on a radar target, but also adaptive detection and tracking of a preceding vehicle by compensating the changes in the geometric relation between the ego-vehicle and the ground due to the driving. Furthermore, the feature-based motion estimation employed to lessen computational burden reduces the number of deployment of the vehicle validation procedure. Experimental results prove that the correction by the proposed motion estimation improves the performance of the vehicle detection and makes the tracking accurate with high temporal consistency under various road conditions.

Development of Lightweight Piezo-composite Curved Actuator (곡면형 압전 복합재료 작동기 LIPCA 개발)

  • Park, Ki-Hoon;Yoon, Kwang-Joon;Park, Hoon-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.94-100
    • /
    • 2002
  • This paper is concerned with the development, and performance test of LIPCA (Lightweight Piezo-composite Curved Actuator) that is lighter than other conventional piezo-composite type actuators. LIPCA is composed of top fiber composite layers with a high modulus and low CTE (Coefficient of Thermal Expansion), a middle PZT cermaic wafer, and base layers with a high modulus and high CTE. The performance of each actuator was evaluated using an actuator test system consisting of an actuator supporting jig, a high voltage actuating power supplier, and a non-contact laser measuring system. The simply supported condition actuator was excited by the power supplier with 1.0Hz cycle and up to $100\sim400V_{pp}$. The displacement at the center point of actuator was measured with non-contact laser displacement measuring system, It has been shown that the LIPCA-C2 can 34% decrease in mass and 13% increase in displacement compared to THUNDER.

Estimation of Transverse Dispersion Coefficients Using Experimental and Numerical Method in River (자연하천에서 추적자 실험 및 수치모의를 통한 횡분산 계수 산정)

  • Seo, Il Won;Jung, Sung Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.74-74
    • /
    • 2017
  • 자연하천에서 수자원의 원활하고 안전한 관리에 있어서 오염물의 혼합 거동에 대한 이해는 매우 중요하다. 대부분의 자연하천의 경우 만곡부 및 합류부와 같은 복잡한 지형을 갖고 있으며 이러한 경우 하천의 흐름이 복잡한 형태를 갖게 된다. 특히 수생태계에 많은 영향을 미치는 하폐수 처리장 처리수는 대부분 1차적으로 지류로 방류되어 이후 본류로 지속적으로 유입되게 된다. 이러한 오염물질이 지류로부터 본류로 혼합되는 합류부 구간의 경우 일반적인 1차원 혼합이 아닌 횡방향을 포함하는 2차원적인 혼합 거동에 대한 분석이 필요하다. 본 연구에서는 금호강과 진천천이 좌안으로부터 오염물질이 지속적으로 유입되는 낙동강 중류구간 합류부에서의 혼합 구간의 연구를 위하여 횡분산계수 산정을 위하여 전기전도도(electrical conductivity: EC)를 이용한 농도 추적 실험을 수행하였다. 낙동강 본류에서 정해진 측선을 따라 센서가 설치된 보트를 이용하여 실시간으로 농도, 수리량 데이터를 GPS 위치 데이터와 함께 취득하였다. 또한 실험으로부터 취득한 자료를 바탕으로 2차원 이송-확산 혼합 거동 모델인 CTM-2D 수치모형을 이용하여 모의하였다. 실험 수행 결과, 지류인 금호강과 진천천의 EC 농도가 합류 전 낙동강 본류의 EC 기저농도 보다 더 높은 값을 나타내었다. 지류의 유입으로 인하여 본류 좌안 쪽에서 전기전도도의 값의 상승을 확인할 수 있었으며 하류로 이동할수록 불균등했던 전기전도도의 분포가 횡방향 혼합을 통하여 점점 균등한 분포로 전환되는 것으로 나타났다. 또한 2차원 혼합 거동 분석에 필요한 횡 분산계수 산정을 위해 모멘트법, 해석해를 이용한 추적법, 수치모형을 통한 역산법을 통해 산정하여 결과를 비교하였다. 그 결과 모멘트법의 경우 다른 방법들에 비하여 전반적으로 과소 산정하는 경향을 나타내었다.

  • PDF