• 제목/요약/키워드: 위성해양학

검색결과 344건 처리시간 0.028초

위성원격탐사와 지구과학 - 위성해양학 - (Satellite Remote Sensing and Earth Science -Satellite Oceanography-)

  • 윤홍주
    • 대한원격탐사학회지
    • /
    • 제15권1호
    • /
    • pp.51-60
    • /
    • 1999
  • 오늘날 위성원격탐사의 제분야는 새로운 첨단과학기술로서 지구과학분야에서 중요한 자리메김을 하고 있다. 1998년은 UN이 제정한 세계해양의 해이다. 따라서 이를 기념하여 위성해양학에 관련되는 사항들을 재정리해보고 나아가 해양수산의 과학기술분야 관련 전문종사자들에게 새롭게 알리는 것도 매우 의미 있는 일이라 하겠다. 아울러 본 총설은 끝부분에 기재한 위성원격탐사와 관련된 여러 서적들을 참고로 하여 편술하였음을 밝혀둔다.

정지궤도 해색탑재체(GOCI) 전처리시스템 (Introduction to Image Pro-processing Subsystem of Geostationary Ocean Color Imager (GOCI))

  • 서석배;임현수;안상일
    • 대한원격탐사학회지
    • /
    • 제26권2호
    • /
    • pp.167-173
    • /
    • 2010
  • 본 논문은 통신해양기상위성에 탑재된 해양탑재체의 관측자료를 지상에서 처리하는 영상전처리 시스템을 소개하는 것으로, 주요 기능, 개발 과정, 운영 계획으로 나누어 기술한다. 해양탑재체 영상전처리시스템은 주 시스템과 백업 시스템이 해양위성센터 (한국해양연구원)와 위성운영센터 (한국항공우주연구원)에 각각 설치되어 있으며, 현재 모든 시험을 완료하고 위성 발사 전의 최종 시험 운영 중에 있다. 해양탑재체 영상전처리시스템이 제공할 통신해양기상위성의 해양데이터는 정지궤도에서 연속적으로 한반도 주변을 관측한 것으로서, 해수 온도 변화나 해양 생태계 등의 해양환경연구에 중요한 자료로 활용 가능할 것으로 기대되고 있다.

해양위성센터 구축: 통신해양기상위성 해색센서(GOCI) 자료의 수신, 처리, 배포 시스템 설계 (Development of Korea Ocean Satellite Center (KOSC): System Design on Reception, Processing and Distribution of Geostationary Ocean Color Imager (GOCI) Data)

  • 양찬수;조성익;한희정;윤석;곽기용;안유환
    • 대한원격탐사학회지
    • /
    • 제23권2호
    • /
    • pp.137-144
    • /
    • 2007
  • 한국해양연구원에서는 2008년으로 예정된 통신해양기상위성의 발사에 맞춰 해색센서 데이터의 수신, 처리, 배포를 위한 해양위성센터 구축을 진행하고 있다. 해양위성센터의 위치는 전파 수신 환경 등의 조건을 고려하여, 5곳의 후보지 중 안산으로 정하였다. 수신시스템은 안테나와 RF로 나뉘어지며, 안테나는 위성으로부터 L밴드로 전송되는 센서데이터를 수신하기 위하여 직경 9m의 카세그레인식 안테나(G/T: 1.67GHz에서 19.35$(dB/^{\circ}K)$)로 설계하였다 RF는 다시 LNA와 다운컨버터로 구성되며 수평편파만을 분리해 모뎀으로 전송하도록 설계하였다. 기존 건물은 센터의 운용개념에 맞도록 전산실, 수전실, 상황실, 자료 처리실 등으로 내부 구조 변경 설계가 완료되었다. H/W및 N/W는 데이터의 수신, 처리, 배포에 효율성을 고려하여 6가지 세부 시스템으로 나누어 설계되었다. 가장 중요한 자료 배포 시스템은 위성을 통한 LRIT 배포 시스템과 인터넷을 통한 자료배포 시스템으로 구성된다. 또한 수신된 데이터를 1시간 내에 제공하기 위해 웹호스팅 등 외부데이터 제공 시스템도 구축하는 것을 추진 예정이다.

정지궤도 해색탑재체(GOCI) 데이터의 수신.처리 시스템과 배포 서비스 (Introduction of Acquisition System, Processing System and Distributing Service for Geostationary Ocean Color Imager (GOCI) Data)

  • 양찬수;배상수;한희정;안유환;유주형;한태현;유홍룡
    • 대한원격탐사학회지
    • /
    • 제26권2호
    • /
    • pp.263-275
    • /
    • 2010
  • 정지궤도 해색탑재체(GOCI, Geostationary Ocean Color Imager)의 주관 운영기관인 해양위성센터 (KOSC, Korea Ocean Satellite Center)는 한국해양연구원에 기반시설을 구축하였다. 또한, 해양위성센터는 수신시스템(GDAS), 전처리시스템(IMPS), 처리시스템(GDPS), 배포시스템(GDDS), 자료교환시스템(DMS), 기관간 자료교환시스템(EDES), 통합감시제어시스템(TMC) 등 GOCI 데이터의 서비스를 위한 준비를 완료하였다. 해양위성센 터에서는 매일 8번 관측되는 GOCI 데이터를 수신하고, 처리하여 배포정책에 따라 Level 1B 이후의 데이터를 사용자에게 배포하게 된다. 여기서는 해양위성센터의 시스템과 배포정책에 대한 개요를 설명하고, 사용자가 해양위성센터의 홈페이지에서 GOCI 데이터를 검색 요청하고 다운로드할 수 있는 방법을 소개한다.

정지궤도 해색탑재체(GOCI)의 개발 (Development of Geostationary Ocean Color Imager (GOCI))

  • 조성익;안유환;유주형;강금실;윤형식
    • 대한원격탐사학회지
    • /
    • 제26권2호
    • /
    • pp.157-165
    • /
    • 2010
  • 정지궤도에서는 세계 최초로 개발된 정지궤도 해색위성(GOCI)이 2010년 6월에 발사될 예정이다. GOCI는 발사 이후 7년간 매일 주간(晝間) 8회 한반도 주변 해양의 클로로필 농도, 용존유기물 농도, 부유물질의 양 등 해양환경분석자료를 생산함으로써 한반도 주변 해양환경의 실시간 감시 임무를 수행할 계획이다. 정지궤도 해색위성의 관측 자료는 어장정보 제공 서비스 및 적조 등 해양재해 예측에 활용될 예정이며, 정지궤도 해색위성에서 산출된 해양의 일차생산력 자료는 해양 탄소순환 연구에 활용되어 해양의 기후변화를 연구하는 데 유용하게 활용될 수 있다. 본 연구에서는 정지궤도 해색위성의 개발 배경 및 사용자 요구사양, 하드웨어 구조, 센서 운용 개념에 대해 설명한다.

국내의 대표적 인공위성 화학추진시스템의 형식 및 특성 (Types and Characteristics of Chemical Propulsion Systems for Repersentative Korean Satellites)

  • 한조영
    • 한국항공우주학회지
    • /
    • 제35권8호
    • /
    • pp.747-752
    • /
    • 2007
  • 국내의 위성 개발 프로그램은 정지궤도위성인 통신해양기상위성과 저궤도위성인 다목적실용위성으로 대별할 수 있다. 각 위성은 임무 요구조건을 충족하는 추진시스템을 탑재하고 있다. 통신해양기상위성에는 위성체의 지구정지궤도 진입, 자세 및 궤도 제어/조정을 위하여 요구되는 추력과 토크를 제공하는 이원추진제 추진시스템인 화학추진시스템이 탑재되어 있으며, 반면 다목적실용위성에는 궤도전이 기능이 배제된, 궤도상 자세제어가 주목적인 단일추진제 추진시스템이 장착되어 있다. 본 연구에서는 이 두 추진시스템의 차이점 및 특성을 비교 분석한다.

위성신호 반사계측(GNSS-R) 기술 현황과 해양 응용분야 (State of the Art on GNSS Reflectometry and Marine Applications)

  • 서기열;박상현;박지혜
    • 해양환경안전학회지
    • /
    • 제27권2호
    • /
    • pp.402-408
    • /
    • 2021
  • 위성신호 반사계측(GNSS-Reflectometry) 기술은 위성으로부터 전송되는 신호의 지표면 혹은 해수면에 반사되는 신호를 측정하여 분석하는 기법으로서, 해수면 높이측정, 태풍 및 기상이변, 그리고 토양의 수분 및 적설량 측정 등에 활용되고 있다. 본 논문에서는 GNSS-R 기술의 해양 활용확대와 그 가능성을 살펴보기 위하여, 위성신호의 신호대잡음비를 이용하는 GNSS-R 기술의 개념과 측정원리에 대해 설명하고, 국제적인 활용 사례를 조사하여 제시하였다. 특히 GNSS-R 기술을 기존 DGNSS 기준국 및 상시관측소 인프라를 이용하여 해양안전 및 환경 모니터링에 활용 가능할 뿐만 아니라, 지상 및 해양기준국, 위성기반, 해상선박 탑재 측면에서의 해양 응용 가능분야를 조사하여 제안하였다.

천리안 해양위성 2호 Level-1 영상의 품질관리를 위한 지상국 시스템 개선 (Improvement of GOCI-II Ground System for Monitoring of Level-1 Data Quality)

  • 이순주;오금희;강금실;최우창;최종국;안재현
    • 대한원격탐사학회지
    • /
    • 제39권6_2호
    • /
    • pp.1529-1539
    • /
    • 2023
  • 바다의 색을 관측하여 해양환경을 관측하는 천리안 해양위성 2호(Geostationary Ocean Color Imager-II, GOCI-II)의 자료는 지상국 시스템에서 다양한 보정과정을 거쳐 Raw~Level 2 (L2)로 생산되는데, 각 처리 단계에서 발생하는 품질 정확도는 단계별로 누적되어 위성자료의 오차가 점차 증폭된다. 이에 GOCI-II의 Level-1A/B (L1A/B) 자료에서 발생할 수 있는 광학적 품질 및 위치보정 성능 오차를 측정할 수 있도록 GOCI-II 지상국 시스템을 개선하였다. 신규로 구축된 광학적 품질 및 위치보정 성능 평가 모듈(Radiometric and Geometric Performance Assessment Module, RGPAM)은 시험 운영을 통해 성능 측정, 측정 결과의 표출 및 저장 등 기능들이 정상 운영됨을 확인하였다. RGPAM을 통해 측정된 성능들은 향후 GOCI-II 검출기의 감도 저하에 따른 실시간 복사보정 모델 개선, 위성 L1A/B 자료의 품질 일관성 확인 및 이슈사항에 대한 재보정 방안 마련을 위한 기초자료로 활용될 수 있을 것으로 기대한다.

이어도 해양과학기지 관측 자료를 활용한 인공위성 고도계 해수면고도 검증 (Validation of Satellite Altimeter-Observed Sea Surface Height Using Measurements from the Ieodo Ocean Research Station)

  • 우혜진;박경애;정광영;권석재;오현주
    • 대한원격탐사학회지
    • /
    • 제39권5_1호
    • /
    • pp.467-479
    • /
    • 2023
  • 위성 고도계는 30년 동안 지속적으로 전 지구 대양에서 해수면고도를 관측하고 있으며, 전 지구 평균 해수면의 상승에 대한 명확한 근거를 제시하였다. 지역적인 해역에서 해수면고도의 시공간 변동성을 연구하기 위해서는 정확한 관측 자료가 필수적으로 요구된다. 본 연구에서는 외해에 위치한 이어도 해양과학기지 관측자료를 활용하여 인공위성(Envisat, Jason-1, Jason-2, SARAL, Jason-3, Sentinel-3A/B) 고도계 관측 해수면고도를 비교 검증하였다. 위성별 해수면고도 편차와 평균제곱근오차는 각각 1.58-4.69 cm와 6.33-9.67 cm를 나타냈다. 위성-이어도 일치점 거리가 멀어질수록 위성 해수면고도 관측 오차가 현저히 증폭되었다. 이어도 해양과학기지 관측 해수면고도를 조석 주기에 대해 조화분해 하였으며 대기압 자료를 활용하여 역기압효과를 계산하여 위성 고도계 자료의 조석 및 대기 효과 보정을 검증하였다. 한반도 주변 해역에서 위성 해수면고도 자료의 정확한 조석 보정을 위해서는 위성에 활용되는 조석 자료의 정확도 향상이 필요함을 확인하였다.

정지궤도 해양관측위성(GOCI-II)의 궤도 성능, 복사보정, 영상기하보정 결과 및 상태 (Current Status and Results of In-orbit Function, Radiometric Calibration and INR of GOCI-II (Geostationary Ocean Color Imager 2) on Geo-KOMPSAT-2B)

  • 용상순;강금실;허성식;차성용
    • 대한원격탐사학회지
    • /
    • 제37권5_2호
    • /
    • pp.1235-1243
    • /
    • 2021
  • 해양탑재체(GOCI-II)가 주탑재체이며 정지궤도복합위성2B호 또는 천리안2B호로 명명된 정지궤도 해양관측위성은 2020년2월에 성공적으로 발사되어 한반도 주변의 해양과 연안을 주간 상시 관측과 감시 임무를 수행하고 있다. 해양탑재체는 천리안1호의 해양탑재체(GOCI)의 임무 승계와 향상된 성능으로 해양·연안의 효율적인 관리, 해양재해·재난 저감을 위한 실시간 해양환경모니터링과 어로 비용절감을 위한 어장환경 정보의 생산 등 해양환경감시를 위하여 개발되었다. 발사 후 해양탑채체는 초기 점검시험(IAC) 단계에 모든 기능이 정상적으로 동작됨을 확인하고, 궤도상시험(IOT) 단계에 성능·운영시험, 복사보정과 영상기하보정을 병행 진행하여 그 결과를 핸드오버회의 통하여 보고하고 국가해양위성센터로 운영권을 이관하였다. 주로 온보드 태양광 보정시스템으로 수행되는 복사보정은 사전에 수립된 계획에 따라 주기적으로 진행하여 최종 Gain과 offset 값을 설정, 적용하고 유효성을 확인하였다. 영상기하보정(INR)은 별영상 자료 기반의 네비게이션 필터링과 랜드마크 기반 보정 방식으로 요구규격을 모두 만족함을 확인하고 INR 프로세스를 검증하였다. 본 논문에서 정지궤도 해양위성이 발사 이후 궤도상 성능시험, 복사보정과 영상기하보정의 방법, 절차를 기술하고 결과와 현황을 분석하고 정리하였다.