DOI QR코드

DOI QR Code

State of the Art on GNSS Reflectometry and Marine Applications

위성신호 반사계측(GNSS-R) 기술 현황과 해양 응용분야

  • Seo, Kiyeol (Korea Research Institute of Ships & Ocean Engineering) ;
  • Park, Sang-Hyun (Korea Research Institute of Ships & Ocean Engineering) ;
  • Park, Jihye (School of Civil & Construction Engineering, Oregon State University)
  • 서기열 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 박상현 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 박지혜 (미국 오레곤주립대학교 토목건축공학)
  • Received : 2021.03.08
  • Accepted : 2021.04.27
  • Published : 2021.04.30

Abstract

GNSS-Reflectometry (GNSS-R) is a technique for measuring and analyzing signals transmitted from satellites, reflecting on the surface of land or sea. GNSS-R is mainly used for measuring the water level variation, typhoon and meteorological anomaly, soil moisture, and snow depth. This paper describes the concept and measurement principle of GNSS-R technology, especially focusing on the field of marine utilization and its feasibility. In particular, it presents the applications of this technique for monitoring the safety of marine environment as well as the marine vessel and their utilization areas based on currently available infrastructure on the ground and maritime reference stations, such as the existing differential GNSS reference stations and integrity monitors (DGNSS RSIM), and GNSS reference station infrastructure, using the ground-based and the satellite-based GNSS-R approaches.

위성신호 반사계측(GNSS-Reflectometry) 기술은 위성으로부터 전송되는 신호의 지표면 혹은 해수면에 반사되는 신호를 측정하여 분석하는 기법으로서, 해수면 높이측정, 태풍 및 기상이변, 그리고 토양의 수분 및 적설량 측정 등에 활용되고 있다. 본 논문에서는 GNSS-R 기술의 해양 활용확대와 그 가능성을 살펴보기 위하여, 위성신호의 신호대잡음비를 이용하는 GNSS-R 기술의 개념과 측정원리에 대해 설명하고, 국제적인 활용 사례를 조사하여 제시하였다. 특히 GNSS-R 기술을 기존 DGNSS 기준국 및 상시관측소 인프라를 이용하여 해양안전 및 환경 모니터링에 활용 가능할 뿐만 아니라, 지상 및 해양기준국, 위성기반, 해상선박 탑재 측면에서의 해양 응용 가능분야를 조사하여 제안하였다.

Keywords

Acknowledgement

본 논문은 한국해양과학기술원 부설 선박해양플랜트연구소의 주요사업인 "스마트기기 기반 해상교통 안전용 측위·항법 핵심기술 개발" [과제번호: PES4060]의 지원으로 수행되었음.

References

  1. Cardellach E., J. Wickert, R. Baggen, J. Benito, A. Camps, N. Catarino, B. Chapron, A. Dielacher, F. Fabra, G. Flato, H. Fragner, C. Gabarro, C. Gommenginger, C. Haas, S. Healy, M. Hernandez-Pajares, P. Hoeg, A. JaGgi, J. Kainulainen, S. A. Khan, N. M. K. Lemke, W. Li, S. V. Nghiem, N. Pierdicca, M. Portabella, K. Rautiainen, A. Rius, I. Sasgen, M. Semmling, C. K. Shum, F Soulat, A. K. Steiner, S. Tailhades, M. Thomas, R. Vilaseca, and C. Zuffada(2018), GNSS Transpolar Earth Reflectometry ExploriNg System (G-TERN): Mission Concept, IEEE Access, Vol. 6, pp. 13980-14018. https://doi.org/10.1109/access.2018.2814072
  2. Cao, Y.(2018), The Status of BDS/GPS-Based Meteorological Applications in China.
  3. E-GEM(2015), European GNSS-R Earth Monitoring, Earth Observation with GNSS Reflections, State of the Art.
  4. GNSSDATA(2021), Global Navigation Satellite System Integrated Data Center, http://www.gnssdata.or.kr.
  5. Hall, C. D. and R. A. Cordey(1988), Multistatic Scatterometry, Proc. IEEE International Geoscience and Remote Sensing Symposium, pp. 561-562.
  6. Ichikawa, K., H. Akiyama, T. Ebinuma, O. Isoguchi, N. Kimura, Y. Kitazawa, M. Konda, N. Kouguchi, H. Tamura, H. Tomita, Y. Yoshikawa, and T. Waseda(2016), Progress Report on the GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height) Research Project, EGU General Assembly 2016, held 17-22 April, 2016 in Vienna Austria.
  7. Kim, S. and J. Park(2018), On performance enhancement of GNSS-R based water level monitoring for near-real time applications, ION-GNSS.
  8. Kim, S. and J. Park(2020), The preliminary study on the performance enhancement of GNSS-R based water level monitoring for near-real time applications (Draft version), GPS Solutions.
  9. KHOA(2021), Korea Real Time Database for NEAR-GOOS, Korea Hydrographic and Oceanographic Agency, http://www.khoa.go.kr/eng/.
  10. Mashburn, J., P. Axelrad, C. Zuffada, E. Loria, A. O'Brien, and B. Haines(2020), Improved GNSS-R Ocean Surface Altimetry With CYGNSS in the Seas of Indonesia, IEEE Transactions on Geoscience and Remote Sensing, Vol. 58, Issue 9, pp. 6071-6087, https://doi.org/10.1109/TGRS.2020.2973079.
  11. Martin-Neira, M.(1993) A passive reflectometry and interferometry system (PARIS): application to ocean altimetry. ESA J., Vol. 17(4), pp. 331-335.
  12. NGII(2021), GNSS reference stations, National Geographic Information Institute, http://www.ngii.go.kr/eng/main.do.
  13. NMPNT(2021), DGNSS reference stations and integrity monitors, National Maritime PNT Office, http://www.nmpnt.go.kr/html/en/.
  14. Purnell, D., N. Gomez, N. H. Chan, J. Strandberg, D. M. Holland, and T. Hobiger(2020), Quantifying the Uncertainty in Ground-Based GNSS-Reflectometry Sea Level Measurements, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 13, pp. 4419-4428. https://doi.org/10.1109/jstars.2020.3010413
  15. Semmling, M., G. Stienne, S. Gontharet, S. Gerland, S. Reboul, and J. Wickett(2019), Estimation of Sea Ice Concentration and Soil Moisture: A GNSS Reflectometry Concept, GNSS+R Workshop.
  16. Strandberg, J., T. Hobiger, and R. Haas(2019), Real-time Sea-level Monitoring using Kalman Filtering of GNSS-R, GPS Solutions Vol. 23, No. 61, https://doi.org/10.1007/s10291-019-0851-1.
  17. Sun, J., C. K. Shum, Y. Yi, J. Hohnson, J. Park, Y. Jia, L. Bao, S. Calmant, V. Ballu, P. Chu, C. Kuo, T. Schone, and J. Wickert(2017), GNSS-Reflectometry Based Coastal Sea and Water-Level Measurements, GNSS+R Workshop.
  18. Wickett, J.(2016) GNSS Reflectometry: Introduction and Recent Developments, GFZ.
  19. Wickett, J., K. Larson, E. Cardellach, and T. Simeonov(2018), GNSS-Reflectometry for Earth Observation: History, Results and Prospects, IGS Workshop.