• Title/Summary/Keyword: 웨어러블센서

Search Result 270, Processing Time 0.025 seconds

Wearable Based User Danger Situation Discerning System (웨어러블 기반 사용자 위험상황 식별 시스템)

  • Yu, Dong-Gyun;Hwang, Jong-Sun;Kim, Han-Kil;Kim, Han-Kyung;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.792-793
    • /
    • 2016
  • Recent studies on a fusion of health care system and the information and communication technology of wearable is being developed Anytime and anywhere without being constrained to measure the biological information of the user. However existing wearable monitors the measured biological information. If the user is hard to deal with for the event of dangerous situations. In this paper, it proposes a system that identifies the status of a user to correct the problem it utilizes sensors and algorithms to measure the biological information. This enables the user will be able to respond quickly to dangerous situations. In the event of a dangerous situation, such as falling or stumbling sends an emergency alert to a designated guardian.

  • PDF

Design and Implementation of Electromyographic Sensor System for Wearable Computing (웨어러블 컴퓨팅을 위한 근전도 센서 시스템의 설계 및 구현)

  • Lee, Young-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.1
    • /
    • pp.114-120
    • /
    • 2018
  • In this paper we implemented an EMG sensor system for wearable devices to obtain and analyze of EMG signals. The performance of the implemented sensor system is evaluated by the correlation analysis of muscle fatigue and muscle activation to clinical EMG system and compared with power consumption of the measured power of our system and commercial systems. In experiments with biceps and triceps brachii of 5 objects, The correlation values of muscle fatigue and muscle activation between our system and the clinical EMG system is 1.1~1.4 and about 1.0, respectively. And also the power consumption of our system is 25~50% less than that of some commercial EMG sensor systems.

Wearable Textile Strain Sensors (웨어러블 텍스타일 스트레인 센서 리뷰)

  • Roh, Jung-Sim
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.733-745
    • /
    • 2016
  • This paper provides a review of wearable textile strain sensors that can measure the deformation of the body surface according to the movements of the wearer. In previous studies, the requirements of textile strain sensors, materials and fabrication methods, as well as the principle of the strain sensing according to sensor structures were understood; furthermore, the factors that affect the sensing performance were critically reviewed and application studies were examined. Textile strain sensors should be able to show piezoresistive effects with consistent resistance-extension in response to the extensional deformations that are repeated when they are worn. Textile strain sensors with piezoresistivity are typically made using conductive yarn knit structures or carbon-based fillers or conducting polymer filler composite materials. For the accuracy and reliability of textile strain sensors, fabrication technologies that would minimize deformation hysteresis should be developed and processes to complement and analyze sensing results based on accurate understanding of the sensors' resistance-strain behavior are necessary. Since light-weighted, flexible, and highly elastic textile strain sensors can be worn by users without any inconvenience so that to enable the users to continuously collect data related to body movements, textile strain sensors are expected to become the core of human interface technologies with a wide range of applications in diverse areas.

Development of Stretch Sensors to Measure Thigh Motor Capacity (허벅지 운동능력 측정을 위한 스트레치 센서 개발)

  • Jang, Jinchul;Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.25 no.5
    • /
    • pp.99-113
    • /
    • 2021
  • This study aimed to produce sensors for measuring thigh motor skills. A textile stretch sensor was manufactured using a CNT(Carbon Nano Tube) 0.1 wt% water SWCNT(Single-Walled Carbon Nano Tube) solution, and different designs were applied to increase the sensitivity of the sensor, and different GF(Gauge Factor) values were compared using UTM devices. The same design was applied to fabrics and weaves to observe changes in performance according to fibrous tissue, and the suitability of sensors was determined based on tensile strength, elongation, and the elongation recovery rate. Sensitivity was found to vary depending upon the design. Thus the manufactured sensor was attached to a pair of fitness pants as a prototype, divided into lunge position and squat position testing, and the stretch sensor was used to measure thigh movements. It was shown that stretch sensors used to measure thigh motor skills should have light and flexible features and that elongation recovery rates and tensile strength should be considered together. The manufactured stretch sensor may be applicable to various sports fields that use lower limb muscles, wearable healthcare products, and medical products for measuring athletic ability.

A Body-Area Localization Technique for WUSB over WBAN Communication (WUSB over WBAN 통신을 위한 신체 영역 위치 인식 기술)

  • Hur, Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.499-505
    • /
    • 2016
  • In this Paper, we propose a body-area localization technique based on WUSB (Wireless USB) over WBAN (Wireless Body Area Networks) protocol required for wearable computer systems. The proposed localization algorithm is executed on the basis of WUSB over WBAN protocol at each sensor node comprising peripherals of a wearable computer system. To increase the accuracy of input information through various body motions in wearable computer systems, a new localization technique with high precision must be developed. To achieve the goal, This paper proposes a combined TDoA/FDoA/AoA (Time Of Arrival/Time Difference Of Arrival/Angle Of Arrival) localization technique with more than four WUSB over WBAN devices to estimate body-area location accurately. The combined TDoA/FDoA/AoA technique reduces 10mm in location estimation errors comparing with a combined TDoA/FDoA technique. This performance enhancement in location error reduction can be ignored at other systems but is meaningful results in body-area localization-based communications.

Design of The Wearable Device considering ICT-based Silver-care (ICT 기반 실버케어를 고려한 웨어러블 디바이스 설계)

  • Lee, Min-hye;Shin, Seong-yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1347-1354
    • /
    • 2018
  • A bedridden patients, elderly people, and dementia who are subject to special care at a medical institution can not handle the feces themselves and need the help of a guardian or care-giver. In particular, toxic substances are contained in the stools, which can cause eczema, dermatitis and urticaria, so it is important to replace diapers. In this paper, we propose a wearable device design for the detection of excretions in consideration of the various excretion requirements of the elderly. The device is a form in which a module are attached to an adult diaper used in a nursing hospital to detect excreta, and the presence or absence of a wearer can be confirmed by an LED. The measured data is transmitted to the smartphone app in real time via Bluetooth in the module and can be checked for popup notification. The validity of this study was verified by comparing the actual excretion with the data collected through the designed module.

Privacy-Preserving Method to Collect Health Data from Smartband

  • Moon, Su-Mee;Kim, Jong-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.113-121
    • /
    • 2020
  • With the rapid development of information and communication technology (ICT), various sensors are being embedded in wearable devices. Consequently, these devices can continuously collect data including health data from individuals. The collected health data can be used not only for healthcare services but also for analyzing an individual's lifestyle by combining with other external data. This helps in making an individual's life more convenient and healthier. However, collecting health data may lead to privacy issues since the data is personal, and can reveal sensitive insights about the individual. Thus, in this paper, we present a method to collect an individual's health data from a smart band in a privacy-preserving manner. We leverage the local differential privacy to achieve our goal. Additionally, we propose a way to find feature points from health data. This allows for an effective trade-off between the degree of privacy and accuracy. We carry out experiments to demonstrate the effectiveness of our proposed approach and the results show that, with the proposed method, the error rate can be reduced upto 77%.

A Review on Paper-based Electrochemical Sensors (종이 기반 전기화학 센서의 연구 동향)

  • Minjee Seo
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • With the increasing demand for wearable sensors that are capable of point-of-care testing, paper-based sensors have been extensively studied. Paper is not only extremely cost-effective but also lightweight and flexible, and it is easy to apply conductive materials such as carbon and hydrophobic substances like wax to its surface. Moreover, the capillary action caused by cellulose fibers in paper allows the flow of liquid without help from external forces, making paper a particularly promising platform for wearable electrochemical sensors. Accordingly, paper-based sensors for detecting various analytes through electrochemical methods have been actively developed. Recently, paper-based electrochemical sensors that utilize electrochemiluminescence (ECL) or electrochromic materials for the optical read-out have been reported. This review introduces the basic fabrication methods and various application strategies of paper-based electrochemical sensors.

Life Weather Index Monitoring System using Wearable based Smart Cap (웨어러블 기반의 스마트 모자를 이용한 생활기상지수 모니터링 시스템)

  • Jun, In-Ja;Chung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.477-484
    • /
    • 2009
  • It is important for the strategy of service to provide the weather information in the environment that the smart clothing has been changed focusing on the consumer center. Recently, the various applications of smart clothing concept have been presented by researchers and developers. Among them, the smart clothing based on the sensors is most likely to gain the highest demand rate in the market. In this paper, we proposed the life weather index monitoring system using the wearable based smart cap. By wearing the proposed smart cap, the weather status is gathered and its signals are transmitted to the connected UMPC. It can be easily monitored in real time. To provide the life weather index according to the sensors, the weather index was analyzed in terms of 6 factors, such as, the heat index, the food poisoning index, the discomfort index, the ultraviolet index, the water pipe freeze possibility index, and the windchill temperature index. Ultimately, this paper suggests empirical application to verify the adequacy and the validity with the life weather index monitoring system. Accordingly, the satisfaction and the quality of services will be improved the smart clothing.

Design and Implementation of Trackball Based UI for Efficient Text Entry on Smartwatch (스마트워치에서의 효율적인 문자입력을 위한 트랙볼 센서 기반 UI 설계 및 구현)

  • Lee, Ji-eun;Ahn, Jung-eun;Park, Kyeongsoo;Choi, Go-eun;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.452-457
    • /
    • 2015
  • Recently, wearable devices have gained popularity with familiar form factors and designs of eye-wear and watch to satisfy wearers' various preferences. Since UI/UX of smartphones can not be applied directly on smaller wearable devices, text entry on wearable devices is still problematic. In this paper, we first identify UI/UX problems of existing input methods and propose a new input method for wearable devices specifically targeting smartwatch platforms. We design and implement an efficient text entry method for wearable devices using trackball sensor and evaluate its performance and usability.