• Title/Summary/Keyword: 원통 구조

Search Result 508, Processing Time 0.025 seconds

Investigation of the Noise Reduction in the Hollow Cylinder Structure (중공 원통형 구조물의 전달소음 감소 방안 연구)

  • Lee, Sang-Won;Lee, Jong-Kil;Jo, Chi-Yong
    • 대한공업교육학회지
    • /
    • v.36 no.1
    • /
    • pp.115-130
    • /
    • 2011
  • When the hollow cylinder structure moves in underwater with high speed structural can be propagated from the end of the structure to the front side. This noise can reduce the sensitivity of the conformal array which installed in the surface of the cylinder. To reduce this noise propagation it is suggested to install two self-reduction rings at the surrounding of the cylinder which is 500mm in diameter and 840mm in length. The places of the two noise reduction rings are 120mm and 240mm point from the end of the structure. Two noise reduction rings reduced 10.1 % of maximum stress. When outside noise frequency applied to the structure from the 4kZ to 6kHz, 20dB noise reduction was calculated using 6 order polynomial equation. When outside noise frequency also applied to the structure with 200Hz, 500Hz, 900Hz, maximum sound pressure level point moved to the end of the structure. Most conformal sensors are fabricated at the front side of the structure. Based on the simulation results proposed two rings can be reduced noise propagation from the tail of the structure effectively.

Buckling Sensitivity of Laminated Composite Pipes Under External Uniform Pressure Considering Ply Angle (등분포하중을 받는 복합재료 관로의 적층각 변화에 따른 좌굴 민감도 분석)

  • Han, Taek Hee;Na, Tae Soo;Han, Sang Yun;Kang, Young Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.123-131
    • /
    • 2007
  • The buckling behavior of a fiber reinforced plastic pipe was researched. When a cylindrical structure is made of isotropic material, it shows two dimensional buckled shape which has same deformed section along the longitudinal direction. But an anisotropic cylindrical structure shows three dimensional buckled shape which has different deformed section along the longitudinal direction. Because the modulus of elasticity is varied in a certain direction when ply angles are changed, the strength of a pipe are changed as ply angles are changed. In this study, the limitation of two dimensional and three dimensional buckling mode was investigated and the buckling strength of a laminated composite pipe was evaluated.

Free Vibration of Composite Cylindrical Shells with a Longitudinal, Interior Rectangular Plate (내부에 사각판이 결합된 복합재료 원통쉘의 자유진동)

  • 이영신;최명환
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.65-79
    • /
    • 1999
  • This paper descrives the method to analyzed the free vibratioin of supported composite cylindrical shells with a longitudinal, interior rectangular plate. To obtain the free vibration characteristics before the combination of two structures, the energy principle based on the classical plate theory and Love's thin shell theory is adopted. The frequency equation of the combined system is formulated using the receptance method. When the line load and moment applied along the joint are assumed as the the Dirac delta and sinusolidal function, the continuity conditions at the joint of the plate and shell are proven to be satisfied. The effects on the combined shell frequencies of the length-no-radius ratios and radius-to-thickness ratios of the shell, fiber orientation angles and orthotropic modulus ratios of the composite are also examined.

  • PDF

Ultimate Behavior of Steel Beam Strengthened with External Tendonand Cylindrical Anchorage (원통형 정착구를 사용하고 외부 긴장재로 보강된 강재보의 극한거동)

  • Choe, Dong-Ho;Jeong, Sang-Hwan;Jung, Jae-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.102-110
    • /
    • 2006
  • This paper examines experimentally the ultimate behavior of I-type steel beam strengthened with external tendon and cylindrical anchorage and analyzes the strengthening effect on the parameters such as initial tendon force, eccentricity, number of strands, and strand areas. The experiment demonstrated that increasing the number of strands, strand areas and eccentricity is more effective than increasing initial tendon force. The proposed cylindrical anchorage system has advantages in applying these parameters. The results showed that the cylindrical anchorage system is efficient and applicable to strengthen steel beam.

Optimum Design of the Cylindrical Shell under External Pressuer Loading (수압을 받는 원통형 쉘의 최적설계)

  • 임오강;이병우;전완수;정현기
    • Computational Structural Engineering
    • /
    • v.8 no.1
    • /
    • pp.85-94
    • /
    • 1995
  • The optimum design of the cylindrical shell under external pressure loading is considered. The design variable is a skin thickness of the unstiffened parallel middle body shell. Overall buckling strength and direct stress and displacements constraints are considered in the design problem The optimum design is achieved with one of the standard nonlinear constrained optimization technique. A method for calculating the sensitivity coefficients is developed using the direct differentiation.

  • PDF

Influence of Geometric Initial Imperfection on the First Buckling Time Variation of Cylinder Under Impact Load (충격하중을 받는 원통의 최초좌굴시간의 변동성에 대한 기하학적 초기결함의 영향)

  • 김두기
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.173-183
    • /
    • 1997
  • In this paper a method is suggested for the probabilistic analysis of impact buckling failure time of cylinder with random axisymmetric geometric imperfection under axial impact. Failure is assumed as axisymmetric radial deformation exceeds the given criteria for the first time. For the generation of random geometric initial imperfection, random field theory by mean function and autocorrelation function of geometric imperfection is used. Suggested method is useful for the treatment of the randomness of realistic geometric imperfection and can be used for the structural safety analysis of cylinder considering its effect.

  • PDF

A Study on the Detection of Defects from Parallel Cylindrical Objects Using Spectral Analysis of Acoustic Impact Signal (타격음 주파수 분석법에 의한 원통 병렬 구조물의 파손 여부 식별에 관한 연구)

  • Bang, Ho-Gyun;Jo, Cheol-U
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.12-20
    • /
    • 1995
  • This paper describes principles and experimental results in conjunction with examining the possibility of the detection of effects from a cylindrical objects. Cylindrical objects have its own resonance frequency. The frequency varies according to the diameter, length etc. And acoustic sound, whose frequency and the harmonic components corresponding to resonance frequency, is radiated from the object. When an object have defect in itself, the radiated acoustic sound is different from normal one. So we can detect its defect by analysing frequency components of acoustic sound. We proved that detection of defective objects by acoustic signal analysis is possible automatically. Also the result can be applied to other kinds of objects.

  • PDF

A Simple Analytic Method for Design of Optical Circular Grating Filters with Phase-Shifting Region (천이영역을 갖는 원통형 격자필터 설계를 위한 간단한 해석적 방법)

  • Ho, Kwang-Chun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.209-215
    • /
    • 2006
  • Circular Bragg gratings(CBGs) canbe incorporated in most of the semiconductor laser devices because of the frequency-selective property applicable as an optical narrowband-pass filter in DWDM optical communications. In this paper, the optical filtering characteristics of CBGs are evaluated by a novel and simple analytic modal transmission-line theory(MTLT), which is based on Floquet-Babinet's principle. The numerical results reveal that this method offers a simple and convenient algorithm to analyze the filtering characteristics of CBGs as well as is extended conveniently to evaluate the guiding problems of circular multi-layered periodic structures.

An Analysis of Axisymmetric Cylindrical Shell by the Leading Matrix Method (인도행렬에 의한 축대칭 원통형 쉘의 해석)

  • 이관희;박준용;김우중
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.193-201
    • /
    • 2004
  • The aim of this study is focused on getting an almost exact solution which is the simplicity and exactness of an axisymmetrically loaded cylindrical shell. This method replaces the finite element method which is a very powerful tool for analysis of any kind of structure which has an arbitrary shape, but is still a numerical analysis. Instead, this study uses the method of distribution of end actions which is a kind of iteration technique to implement the leading matrix method. The distribution and carry-over factors of a cylinder are calculated by the theory of a differential equation of a beam on an elastic foundation. The results are satisfactory when this method is applied to a cylinder that is subjected to a concentrated load and hydrostatic pressure when compared with the BEF analogy separately.