• 제목/요약/키워드: 원론

검색결과 119건 처리시간 0.029초

중학교 기하 교재의 '원론' 교육적 고찰 (A Study on Teaching of the Elements of Geometry in Secondary School)

  • 우정호;권석일
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제16권1호
    • /
    • pp.1-23
    • /
    • 2006
  • 본 논문은 중학교 평면 논증기하를 원론 교육적 입장에서 분석 고찰한 것이다. 이를 위하여 먼저 'Euclid 원론'에 따른 고전적 원론 교육을 목적, 내용, 방법의 측면에서 분석하고 그 역사를 개관하였다. 이어 고전적 원론 교육에 대한 비판적 논의를 고찰하고 Clairaut의 '기하학 원론'과 Branford의 역사-발생적 기하 교육론을 중심으로 역사-발생적 기하 원론 교육을 목적, 내용, 방법의 측면에서 분석하였다. 그리고 이러한 분석과 근세 이후 기하교과서의 변천과정에 비추어 현재의 중학교 논증기하 교재의 기본가정을 분석하고, 그 내용 및 체제를 가설적 작도, 정리의 제시순서, 증명진술 방법, 정의제시 방법, 연습문제로 나누어 분석하였다. 마지막으로 이러한 논의를 바탕으로, 현 중학교 기하교재의 기본적 관점을 탐색하고 두 원론의 상보적 통합 방안을 모색하였다.

  • PDF

초등학교 수학 교과서의 이해에 유클리드 원론이 주는 시사점 (Implications of Euclid Elements for the Understanding of Elementary Mathematics Textbooks)

  • 홍갑주;강정민
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제20권1호
    • /
    • pp.117-130
    • /
    • 2017
  • 유클리드 원론은 그 내용과 방법론의 중요성으로 인해 현재까지도 수학과 수학교육에서 중요한 교재로 인식되고 있다. 본 연구에서는 원론이 초등학교 수학교과서의 이해에 구체적으로 어떻게 관련되는지를 논의하고 교사교육에의 가치를 밝히고자 하였다. 먼저, 초등학교 교과서의 구체적인 몇 가지 내용들을 원론의 관점에서 고찰할 때 어떤 교육적 시사점을 얻을 수 있는지 검토함으로써 초등학교 교육내용의 이해에 있어서 원론의 중요성을 예증하였다. 또한, 교사와 예비교사들이 체계로서의 수학을 경험할 수 있는 장으로서 원론의 가치를 논의하였다.

Clairaut의 <대수학 원론>에 나타난 대수 지도 원리에 대한 분석 (Analysis on the Principles for Teaching Algebra Revealed in Clairaut's )

  • 장혜원
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제17권3호
    • /
    • pp.253-270
    • /
    • 2007
  • 18세기 프랑스의 수학자 A.C. Clairaut는 역사발생적 원리에 근거하여 기하 교재에 이어 대수 교재 <대수학 원론>을 집필하였다. 본 논문은 <대수학 원론>을 분석함으로써 대수 지도를 위해 Clairaut가 의도한 원리 및 구체적인 방식의 특징들을 고찰하고, 학교 수학에서 대수 영역의 교수-학습과 비교, 논의함으로써 적용 가능한 교수학적 시사점을 찾는 것을 목표로 한다. 이를 위해 <대수학 원론>의 구성 및 내용에 대해 개관하고 초보자의 정신에 자연스럽게 전개한다는 Clairaut의 의도에서 비롯된 대수 지도 원리의 여섯 가지 특징을 추출한다. 이 중에는 <기하학 원론>에서의 특징과 공통적인 것도 있고 대수라는 내용 영역상의 구별에서 비롯되는 독특한 것도 있다. 그리고 학교 수학의 대수 영역 중 특정 주제-방정식 세우기, 문자식의 계산과 문자의 부호, 곱셈의 부호 규칙, 이차방정식의 해법, 근과 계수와의 일반적 관계-와 관련하여 논의하고 시사점을 찾는다.

  • PDF

『유클리드 원론』 I권 정리 22의 Diorism을 통해서 본 존재성 (The Diorism in Proposition I-22 of 『Euclid Elements』 and the Existence of Mathematical Objects)

  • 유미영;최영기
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제25권3호
    • /
    • pp.367-379
    • /
    • 2015
  • 고대 그리스에서 '수학적 대상이 존재하기 위한 조건'으로 사용된 diorism을 통하여 수학적 대상의 존재성에 대하여 살펴본다. Diorism이 제시된 대표적 예인 "유클리드 원론" I권 정리 22를 중심으로 삼각형의 존재성을 "원론"이 어떻게 다루었는지에 대하여 논의한다. 정의한 대상의 존재성을 공준이나 명제로 증명하는 "원론"의 구조를 통하여 수학적 대상의 존재성은 인식가능성이고 공리체계 내에서 증명가능성임을 밝힌다. 이러한 관점에서 작도는 "원론"에서 존재성을 보증하는 주요 방법이다. 또한 diorism의 맥락에서 전개도가 다면체를 구성할 수 있음을 살펴보았다. 이러한 내용을 바탕으로 수학적 대상의 존재성에 대해 학교수학에서 시사하는 점을 논의하였다.

유클리드의 원론에 나타난 대수적 개념에 대하여 (On the Algebraic Concepts in Euclid's Elements)

  • 홍진곤;권석일
    • 한국수학사학회지
    • /
    • 제17권3호
    • /
    • pp.23-32
    • /
    • 2004
  • 본 고에서는 유클리드의 원론에 나타난 대수적 개념들을 개괄하고, 현대적인 기호로 그 의미를 분석하였다. 유클리드의 원론에는 이차방정식, 곱셈공식, 비례식, 정수론, 무리수 등의 대수적 개념이 포함되어 있으나, 그 표현과 추론은 완전히 기하학적인 형태로 이루어져 있다 이러한 내용을 분석하는 것은 대수학의 발생적 본질을 찾아 최초에 수학이 만들어지는 상황을 학생들에게 경험하게 함으로써 수학화를 구현하려는 교육적인 문제의식에도 일종의 시사를 제공하게 될 것이다.

  • PDF

Clairaut의 <기하학 원론>에 나타난 역사발생적 원리에 대한 고찰 (A study on the historico-genetic principle revealed in Clairaut's )

  • 장혜원
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제13권3호
    • /
    • pp.351-364
    • /
    • 2003
  • Clairaut의 <기하학 원론>은 Euclid의 <원론>의 논리-연역적인 전개 방식에 대항하여 역사발생적 원리에 입각하여 쓰여진 최초의 기하 교재이다. 본 논문은 <기하학 원론>을 고찰함으로써 Clairaut가 생각한 역사발생적 원리를 파악하고, 아울러 학교 수학에의 적용 방안을 탐색하는 것을 목표로 한다. 이를 위해, <기하학 원론>의 내용 전개 방식으로부터 저자의 기본 아이디어에서 비롯된 다섯 가지 특징을 추출한다. 필요에 의한 기하의 출현, 실생활 문제 해결을 통한 접근, 초보자에게 자연스런 방법으로서 직관적 요소와 논리적 요소의 조화, 기본 원리의 파악, 활동적 원리의 구현. 이러한 특징은 Clairaut의 역사발생적 원리를 구체적으로 드러내며, 기하 영역의 교재 구성 및 교수 실제를 위한 시사점을 제공한다. 그리고, 학교 기하에서 매우 유용한 두 개의 정리를 예로 들어 그의 역사발생적 원리를 재음미한다.

  • PDF

Euclid 원론과 Clairaut 원론의 비교를 통한 기하 교육에서 논리와 직관의 고찰 (Revisiting Logic and Intuition in Teaching Geometry: Comparing Euclid's Elements and Clairaut's Elements)

  • 장혜원
    • 한국수학사학회지
    • /
    • 제34권1호
    • /
    • pp.1-20
    • /
    • 2021
  • Logic and intuition are considered as the opposite extremes of teaching geometry, and any teaching method of geometry is to be placed between these extremes. The purpose of this study is to identify the characteristics of logical and intuitive approaches for teaching geometry and to derive didactical implications by taking Euclid's Elements and Clairaut's Elements respectively representing the extremes. To this end, comparing the composition and contents of each book, we analyze which propositions Clairaut chose from Euclid's Elements, how their approaches differ in definitions, proofs, and geometrical constructions, and what unique approaches Clairaut took. The results reveal that Clairaut mainly chose propositions from Euclid's books 1, 3, 6, 11, and 12 to provide the contexts that show why such ideas were needed, rather than the sudden appearance of abstract and formal propositions, and omitted or modified the process of justification according to learners' levels. These propose a variety of intuitive strategies in line with trends of teaching geometry towards emphasis on conceptual understanding and different levels of justification. Specifically, such as the general principle of similarity and the infinite geometric approach shown in Clairaut's Elements, we could confirm that intuition-based geometry does not necessarily aim for tasks with low cognitive demand, but must be taught in a way that learners can understand.

에서 작도의 의미에 대한 고찰 (A Study on the Meaning of Construction in Euclid Elements)

  • 김창수;강정기
    • 한국학교수학회논문집
    • /
    • 제20권2호
    • /
    • pp.119-139
    • /
    • 2017
  • 고대 그리스 시대 작도는 현 교육에서의 작도 이상의 의미를 지닌 것이었다. 본 연구는 이러한 사실에 입각하여 현 교과서의 작도 의미를 살펴보고, 이와 대비되는 에서의 작도 의미를 추출해 보았다. 더불어 에서의 작도 의미를 현 교육에 반영하였을 때 나타나는 이점을 숙고해 보고, 그 이점을 활용하는 방안을 제안하였다. 그 결과 현 교과서의 작도는 삼각형의 합동 조건 도입과 이해를 위한 수단임을 확인할 수 있었다. 반면, 에서 작도는 4가지 의미를 지니고 있었다. 공준으로 타당성을 확보한 추상적 활동, 도형의 존재성 입증 및 논증에서 보조선 도입의 타당성 확보 수단, 보조선 도입 이외의 논증 개입 자제, 수와 대수를 다루는 수단이 곧 작도였다. 이로부터 논증에 보조선 도입의 타당성 확보 수단으로서의 작도 활용의 이점을 논의하였다. 아울러 Euclid 도구로 작도 불가능한 보조선에 대하여 가상적 도구의 개입에 의한 작도 관점을 제시하였다.

  • PDF

수학에 점의 사유에 대한 고찰 (A Study on the Thought of a Point in Mathematics)

  • 윤호창
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2012년도 춘계 종합학술대회 논문집
    • /
    • pp.141-142
    • /
    • 2012
  • 점과 선은 도형의 기초이며 수학과 물리학에서 중요한 요소라고 할 수 있다. 도형의 발달은 고대 이집트에서 이루어졌으며 이러한 도형의 발달은 그리스에서 체계화 되었으며 대표적으로 유클리드의 '기하학 원론'에서 점과 선에 대한 정의와 공리 등에 인하여 기하학은 발전하였다. 이러한 점에 관한 정의는 시대에 따라 재해석되고 논쟁과 토론의 과정을 거쳐왔으며. 즉 '점이 부분이 없는 것'이라는 기하학 원론'의 정의는 점의 존재성에 대한 다양한 철학적 사유를 이끌었으며 19세기 수학 기초의 위기 속에서 다양한 수학적 접근법이 나타나게 되었다. 본 논문에서는 점의 기존의 정의와 다양한 접근 방법에 대해서 살펴보고자 한다.

  • PDF