본 논문은 중학교 평면 논증기하를 원론 교육적 입장에서 분석 고찰한 것이다. 이를 위하여 먼저 'Euclid 원론'에 따른 고전적 원론 교육을 목적, 내용, 방법의 측면에서 분석하고 그 역사를 개관하였다. 이어 고전적 원론 교육에 대한 비판적 논의를 고찰하고 Clairaut의 '기하학 원론'과 Branford의 역사-발생적 기하 교육론을 중심으로 역사-발생적 기하 원론 교육을 목적, 내용, 방법의 측면에서 분석하였다. 그리고 이러한 분석과 근세 이후 기하교과서의 변천과정에 비추어 현재의 중학교 논증기하 교재의 기본가정을 분석하고, 그 내용 및 체제를 가설적 작도, 정리의 제시순서, 증명진술 방법, 정의제시 방법, 연습문제로 나누어 분석하였다. 마지막으로 이러한 논의를 바탕으로, 현 중학교 기하교재의 기본적 관점을 탐색하고 두 원론의 상보적 통합 방안을 모색하였다.
유클리드 원론은 그 내용과 방법론의 중요성으로 인해 현재까지도 수학과 수학교육에서 중요한 교재로 인식되고 있다. 본 연구에서는 원론이 초등학교 수학교과서의 이해에 구체적으로 어떻게 관련되는지를 논의하고 교사교육에의 가치를 밝히고자 하였다. 먼저, 초등학교 교과서의 구체적인 몇 가지 내용들을 원론의 관점에서 고찰할 때 어떤 교육적 시사점을 얻을 수 있는지 검토함으로써 초등학교 교육내용의 이해에 있어서 원론의 중요성을 예증하였다. 또한, 교사와 예비교사들이 체계로서의 수학을 경험할 수 있는 장으로서 원론의 가치를 논의하였다.
18세기 프랑스의 수학자 A.C. Clairaut는 역사발생적 원리에 근거하여 기하 교재에 이어 대수 교재 <대수학 원론>을 집필하였다. 본 논문은 <대수학 원론>을 분석함으로써 대수 지도를 위해 Clairaut가 의도한 원리 및 구체적인 방식의 특징들을 고찰하고, 학교 수학에서 대수 영역의 교수-학습과 비교, 논의함으로써 적용 가능한 교수학적 시사점을 찾는 것을 목표로 한다. 이를 위해 <대수학 원론>의 구성 및 내용에 대해 개관하고 초보자의 정신에 자연스럽게 전개한다는 Clairaut의 의도에서 비롯된 대수 지도 원리의 여섯 가지 특징을 추출한다. 이 중에는 <기하학 원론>에서의 특징과 공통적인 것도 있고 대수라는 내용 영역상의 구별에서 비롯되는 독특한 것도 있다. 그리고 학교 수학의 대수 영역 중 특정 주제-방정식 세우기, 문자식의 계산과 문자의 부호, 곱셈의 부호 규칙, 이차방정식의 해법, 근과 계수와의 일반적 관계-와 관련하여 논의하고 시사점을 찾는다.
고대 그리스에서 '수학적 대상이 존재하기 위한 조건'으로 사용된 diorism을 통하여 수학적 대상의 존재성에 대하여 살펴본다. Diorism이 제시된 대표적 예인 "유클리드 원론" I권 정리 22를 중심으로 삼각형의 존재성을 "원론"이 어떻게 다루었는지에 대하여 논의한다. 정의한 대상의 존재성을 공준이나 명제로 증명하는 "원론"의 구조를 통하여 수학적 대상의 존재성은 인식가능성이고 공리체계 내에서 증명가능성임을 밝힌다. 이러한 관점에서 작도는 "원론"에서 존재성을 보증하는 주요 방법이다. 또한 diorism의 맥락에서 전개도가 다면체를 구성할 수 있음을 살펴보았다. 이러한 내용을 바탕으로 수학적 대상의 존재성에 대해 학교수학에서 시사하는 점을 논의하였다.
본 고에서는 유클리드의 원론에 나타난 대수적 개념들을 개괄하고, 현대적인 기호로 그 의미를 분석하였다. 유클리드의 원론에는 이차방정식, 곱셈공식, 비례식, 정수론, 무리수 등의 대수적 개념이 포함되어 있으나, 그 표현과 추론은 완전히 기하학적인 형태로 이루어져 있다 이러한 내용을 분석하는 것은 대수학의 발생적 본질을 찾아 최초에 수학이 만들어지는 상황을 학생들에게 경험하게 함으로써 수학화를 구현하려는 교육적인 문제의식에도 일종의 시사를 제공하게 될 것이다.
Clairaut의 <기하학 원론>은 Euclid의 <원론>의 논리-연역적인 전개 방식에 대항하여 역사발생적 원리에 입각하여 쓰여진 최초의 기하 교재이다. 본 논문은 <기하학 원론>을 고찰함으로써 Clairaut가 생각한 역사발생적 원리를 파악하고, 아울러 학교 수학에의 적용 방안을 탐색하는 것을 목표로 한다. 이를 위해, <기하학 원론>의 내용 전개 방식으로부터 저자의 기본 아이디어에서 비롯된 다섯 가지 특징을 추출한다. 필요에 의한 기하의 출현, 실생활 문제 해결을 통한 접근, 초보자에게 자연스런 방법으로서 직관적 요소와 논리적 요소의 조화, 기본 원리의 파악, 활동적 원리의 구현. 이러한 특징은 Clairaut의 역사발생적 원리를 구체적으로 드러내며, 기하 영역의 교재 구성 및 교수 실제를 위한 시사점을 제공한다. 그리고, 학교 기하에서 매우 유용한 두 개의 정리를 예로 들어 그의 역사발생적 원리를 재음미한다.
Logic and intuition are considered as the opposite extremes of teaching geometry, and any teaching method of geometry is to be placed between these extremes. The purpose of this study is to identify the characteristics of logical and intuitive approaches for teaching geometry and to derive didactical implications by taking Euclid's Elements and Clairaut's Elements respectively representing the extremes. To this end, comparing the composition and contents of each book, we analyze which propositions Clairaut chose from Euclid's Elements, how their approaches differ in definitions, proofs, and geometrical constructions, and what unique approaches Clairaut took. The results reveal that Clairaut mainly chose propositions from Euclid's books 1, 3, 6, 11, and 12 to provide the contexts that show why such ideas were needed, rather than the sudden appearance of abstract and formal propositions, and omitted or modified the process of justification according to learners' levels. These propose a variety of intuitive strategies in line with trends of teaching geometry towards emphasis on conceptual understanding and different levels of justification. Specifically, such as the general principle of similarity and the infinite geometric approach shown in Clairaut's Elements, we could confirm that intuition-based geometry does not necessarily aim for tasks with low cognitive demand, but must be taught in a way that learners can understand.
고대 그리스 시대 작도는 현 교육에서의 작도 이상의 의미를 지닌 것이었다. 본 연구는 이러한 사실에 입각하여 현 교과서의 작도 의미를 살펴보고, 이와 대비되는 에서의 작도 의미를 추출해 보았다. 더불어 에서의 작도 의미를 현 교육에 반영하였을 때 나타나는 이점을 숙고해 보고, 그 이점을 활용하는 방안을 제안하였다. 그 결과 현 교과서의 작도는 삼각형의 합동 조건 도입과 이해를 위한 수단임을 확인할 수 있었다. 반면, 에서 작도는 4가지 의미를 지니고 있었다. 공준으로 타당성을 확보한 추상적 활동, 도형의 존재성 입증 및 논증에서 보조선 도입의 타당성 확보 수단, 보조선 도입 이외의 논증 개입 자제, 수와 대수를 다루는 수단이 곧 작도였다. 이로부터 논증에 보조선 도입의 타당성 확보 수단으로서의 작도 활용의 이점을 논의하였다. 아울러 Euclid 도구로 작도 불가능한 보조선에 대하여 가상적 도구의 개입에 의한 작도 관점을 제시하였다.
점과 선은 도형의 기초이며 수학과 물리학에서 중요한 요소라고 할 수 있다. 도형의 발달은 고대 이집트에서 이루어졌으며 이러한 도형의 발달은 그리스에서 체계화 되었으며 대표적으로 유클리드의 '기하학 원론'에서 점과 선에 대한 정의와 공리 등에 인하여 기하학은 발전하였다. 이러한 점에 관한 정의는 시대에 따라 재해석되고 논쟁과 토론의 과정을 거쳐왔으며. 즉 '점이 부분이 없는 것'이라는 기하학 원론'의 정의는 점의 존재성에 대한 다양한 철학적 사유를 이끌었으며 19세기 수학 기초의 위기 속에서 다양한 수학적 접근법이 나타나게 되었다. 본 논문에서는 점의 기존의 정의와 다양한 접근 방법에 대해서 살펴보고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.