• Title/Summary/Keyword: 울릉 난수성 소용돌이

Search Result 11, Processing Time 0.019 seconds

Temperature Variation in the Ulleung Warm Eddy during 2013~2015 (2013~2015년 울릉 난수성 소용돌이의 수온변동)

  • Choi, Yong-Kyu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.205-211
    • /
    • 2016
  • Based on the Expendable Bathythermograph (XBT) observation and serial oceanographic observation of National Institute of Fisheries Science (NIFS) during July 2013 to July 2015, we examined the temperature variation in the Ulleung Warm Eddy (UWE) in the East Sea. The UWE was always shown during the observation periods even though it was not the whole shape. The coefficient of variation (CV) was largest in the depth of 250 m at the side of the east coast of Korean Peninsula with $3{\sim}4^{\circ}C$ in temperature. CV of the horizontal distribution at 250 m depth was also largest in the region biased along the east coast of Korea. The warm eddy moved not only to the east-west direction but also to the north-south direction in the viewpoint of horizontal distributions of temperature. This region between the Korean Peninsula and Ulleung island also is the passage of the East Korean Warm Current. This means that interaction between the East Korean Warm Current and periphery of warm eddy makes large in the variation of movement along the east coast of Korean Peninsula. The largest variation of temperature at 250 m depth seemed to be significantly correlated with the East Sea Intermediate Water (ESIW) underlying Ulleung Warm Eddy. It is suggested that the interaction between the ESIW and UWE is active in the mid-depth along the periphery of UWE.

Physical Characteristics and Classification of the Ulleung Warm Eddy in the East Sea (Japan Sea) (동해 울릉 난수성 소용돌이의 물리적 특성 및 분류)

  • SHIN, HONG-RYEOL;KIM, INGWON;KIM, DAEHYUK;KIM, CHEOL-HO;KANG, BOONSOON;LEE, EUNIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.298-317
    • /
    • 2019
  • The physical characteristics of the Ulleung Warm Eddy (UWE) and its relationship with the East Korea Warm Current (EKWC) were analyzed using the CMEMS (Copernicus Marine Environment Monitoring Service) satellite altimetry data and the CTD data of the National Institute of Fisheries Science (NIFS) near the Ulleung Basin from 1993 to 2017. The distribution of the UWEs coupled with EKWC accounts for 81% of the total number of the UWEs. Only 7% of the total eddies are completely separated from the EKWC. The UWE has the characteristics of high temperature and high salinity water inside of it when it is formed from the EKWC. However, when the UWE is wintering, its internal structure changes greatly. In the winter, surface homogeneous layer of $10^{\circ}C$ and 34.2 psu inside of the UWE is produced by vertical convection from sea-surface cooling, and deepened to a maximum depth of approximately 250 m in early spring. In summer, the UWE changes into a structure with a stratified structure in the upper layer within a depth of 100 m and a homogeneous layer made in winter in the lower layer. 62 UWEs were produced for 25 years from 1993 to 2017. on average, 2.5 UWEs were formed annually, and the average life span was 259 days (approximately 8.6 months). The average size of the UWEs is 98 km in the east-west direction and 109 km in the north-south direction. The average size of UWE using satellite altimetric data is estimated to be 1~25 km smaller than that using water temperature cross-sectional data.

On the Warm Eddies in the Southwestern Part of the East Sea (the Japan Sea) (동해 남서해역에서의 난수성 소용돌이에 대하여)

  • AN, HUISOO;SHIM, KYUNGSIN;SHIN, HONG-RYEOL
    • 한국해양학회지
    • /
    • v.29 no.2
    • /
    • pp.152-163
    • /
    • 1994
  • The characteristics and fluctuations of structures and spatial distributions of warm eddies (anticyclonic eddies) in the southwestern part of the East Sea (the Japan Sea) are discussed based on the data gathered y the Fisheries Research and Development Agency, Korea from 1967 to 1968. The warm eddies existed very often in the southwest of the Ullung Island. The warm eddies are elliptical in shape and the mean size is about 130 km in diameter. Bimonthly distributions of warm eddies, the largest value of observed frequency and diameter in August and the least in June, indicate that the generation of the warm eddy is related with the development of the East Korean Warm Current. The warm eddies move west, north or southward with 0.80∼2.50 cm/sec or stay over a few months at the same place southwest of the Ullung Island. Movement of warm eddies may be influenced by the neighboring currents, the Rossby wave and the topography. The relationship between the position of warm eddies and the bottom topography suggests that the development and the movement of warm eddies are controlled by the Ullung Basin. The warm eddies should be divided into two groups. One group is the shallow warm eddy with strong baroclinic characteristics and the other is the deep one with strong Barotropic characteristics. The shallow group seems to be closely related with positive values (in summer) of the sea level difference between Pusan and Mozi (the Tsushima Current), while the deep group has no relation with that.

  • PDF

The Characteristics of Structure of Warm Eddy Observed to the Northwest of Ullungdo in 1992 (1992년 울릉도 북서부해역에서 관측된 난수성 소용돌이의 구조특성)

  • 신홍렬;변상경
    • 한국해양학회지
    • /
    • v.30 no.1
    • /
    • pp.39-56
    • /
    • 1995
  • A warm eddy was continuously observed to the east of Sokcho, Korea from March to June 1992. This warm eddy had been formed in 1991, wintered to the east of Sokcho, and moved northward a little during April-June 1992. The diameter and the depth of the eddy were respectively about 160 km and about 330 m in March. The homogeneous (mixed) layer of 10$^{\circ}C$ and 34.2 psu water was found at the upper layer with the maximum size of about 130 km and maximum depth of about 230 m in March. The size of the eddy and homogeneous layer decreased in June. Maximum current velocity of the eddy was about 65 cm/s at the surface layer and exceeded20 cm/s at 200 m depth. It is shown that the flow field was nearly in geostrophic balance, but there was a little difference in the current velocity between ADCP and geostrophic calculation in June. The surface velocity of the East Korean Warm Current(EKWC) was 50∼70cm/s which was very similar to the northward current velocity of the eddy. The EKWC water appeared in the layer upper than 200 m depth.

  • PDF

Coastal Stratification Induced by Oceanographic Conditions of Open Sea in the East Sea on February, 2013 (2013년 2월 동해의 근해 해황에 의한 연안 성층)

  • Choi, Yong-Kyu;Kim, Sang-Woo;Jeong, Hee-Dong;Shim, Jeong-Min;Kwon, Kee-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.4
    • /
    • pp.327-333
    • /
    • 2013
  • In order to see the stratification phenomenon in the coastal area induced by oceanographic conditions of the open sea, we analyzed the CTD (Conductivity-Temperature-Depth) data taken from the oceanographic survey on February 16~28, 2013. The stratification in Jukbyun coast was stronger than those of Sokcho and Gampo coast. Jukbyun line (104 line in the Serial Oceanographic Observation of National Fisheries Research and Development Institute) showed the anticyclonic eddy in the vertical distribution of temperature. The isotherm of $10^{\circ}C$ was concaved to the depth of 200 m in the middle station (station no. 9) of the line 104. It showed above $4^{\circ}C$ in positive temperature anomaly in the depth of 100~200 m in the middle station (station no. 9) of the line 104. This positive temperature anomaly was stretched to the coastal area with shallower depth. It is suggested that the stratification in Jukbyun coast was resulted from the onshoring of the Ulleung warm eddy. The movement of warm eddy may be act as a block to migration of cold water fishes like cod.

Migration of the Dokdo Cold Eddy in the East Sea (동해 독도 냉수성 소용돌이의 이동 특성)

  • KIM, JAEMIN;CHOI, BYOUNG-JU;LEE, SANG-HO;BYUN, DO-SEONG;KANG, BOONSOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.351-373
    • /
    • 2019
  • The cold eddies around the Ulleung Basin in the East Sea were identified from satellite altimeter sea level data using the Winding-Angle method from 1993 to 2015. Among the cold eddies, the Dokdo Cold Eddies (DCEs), which were formed at the first meandering trough of the East Korea Warm Current (EKWC) and were pinched off to the southwest from the eastward flow, were classified and their migration patterns were analyzed. The vertical structures of water temperature, salinity, and flow velocity near the DCE center were also examined using numerical simulation and observation data provided by the Hybrid Coordinate Ocean Model and the National Institute of Fisheries Science, respectively. A total of 112 DCEs were generated for 23 years. Of these, 39 DCEs migrated westward and arrived off the east coast of Korea. The average travel distance was 250.9 km, the average lifespan was 93 days, and the average travel speed was 3.5 cm/s. The other 73 DCEs had moved to the east or had hovered around the generated location until they disappeared. At 50-100 m depth under the DCE, water temperature and salinity (T < $5^{\circ}C$, S < 34.1) were lower than those of ambient water and isotherms made a dome shape. Current faster than 10 cm/s circulates counterclockwise from the surface to 300 m depth at 38 km away from the center of DCE. After the EKWC separates from the coast, it flows eastward and starts to meander near Ulleungdo. The first trough of the meander in the east of Ulleungdo is pushed deep into the southwest and forms a cold eddy (DCE), which is shed from the meander in the south of Ulleungdo. While a DCE moves westward, it circumvents the Ulleung Warm Eddy (UWE) clockwise and follows U shape path toward the east coast of Korea. When the DCE arrives near the coast, the EKWC separates from the coast at the south of DCE and circumvents the DCE. As the DCE near the coast weakens and extinguishes about 30 days later after the arrival, the EKWC flows northward along the coast recovering its original path. The DCE steadily transports heat and salt from the north to the south, which helps to form a cold water region in the southwest of the Ulleung Basin and brings positive vorticity to change the separation latitude and path of the EKWC. Some of the DCEs moving to the west were merged into a coastal cold eddy to form a wide cold water region in the west of Ulleung Basin and to create a elongated anticlockwise circulation, which separated the UWE in the north from the EKWC in the south.

Submerged Temperature Measurements using SUS-Ocean Acoustic Tomography Technology in the East Sea : Preliminary Results (동해에서 SUS-해양음향 토모그래피를 적용한 해양내부 수온관측 : 예비결과)

  • 한상규
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.141-146
    • /
    • 1998
  • 동해 울릉분지에서 해양내부에 수온구조 파악을 위하여 수중 폭발성 음원인 SUS를 이용한 해양음향 토모그래피 실험을 1998년 8월에 실시하였다. 토모그래피 실험은 30, 60 km 반경으로 36개의 지점에서 항공기를 이용하여 SUS를 투하하고 관측해역 중앙에 위치한 선박에서 선배열수신기 (10개의 수신기 배열)로 수신하였다. 토모그래피 실험에 의한 역산 결과를 비교하기 위하여 AXBT를 이용한 수온관측이 동시에 수행되었다. AXBT 관측으로 울릉분지에서 자주 나타나는 난수성 소용돌이가 관측되었으며 이는 관측해역의 남동쪽에 위치하고 있으며 남서방향에서 북동방향으로 진행하는 형태를 보이고 있다. 음파의 도달시간 차이를 이용한 역산결과는 해양내부의 수온분포를 보여주는데 오차가 커서 새로운 해양음향 토모그래피 기법의 도입 필요성을 제시한다.

  • PDF

Structure of the Temperature and Salinity in 2003-2005 Profiled by the ARGO floats around the Ulleung-do area in the East Sea (ARGO 뜰개에 의한 2003-2005년 울릉도 주변 해역의 수온-염분 구조)

  • Kim, Eung;Ro, Young-Jae;Youn, Yong-Hun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.1
    • /
    • pp.21-30
    • /
    • 2006
  • This study investigated the temperature-salinity spatio-temporal variability around the Ulleung-do Island (UI) by using CTD profiles obtained by the ARGO floats far the period of Oct.,2003 to Aug.,2005. The waterbody in the upper 700 m around the UI could be classified into five water masses, which is consistent to traditional water characteristics in the East Sea. In the upper surface layer, the temperature and salinity in fall season became even lower than those properties in the summer time. The East Sea Intermediate Water (ESIW) characterized by the salinity minimum layer shows the range of potential temperature between 1 to $5^{\circ}C$ and salinity lower than 34.06 psu. The ESIW lies approximately at 265 m depth with average thickness of 175 m. This thickness of the ESIW continues to be relatively uniform regardless of spatio-temporal space. However, the depth of the ESIW shows vertical variation influenced by the Ulleung warm eddy (UWE). Since the UWE lies in the upper layer, the Upper Portion of the Japan Sea Proper. Water (UPJSPW) is also affected to show the vertical variation. The influence extorted by the UWE reached down to 700 m depth in terms of temperature. The CTD profiles obtained with the high sampling rate by ARCO floats over two-year period provided with very useful and detailed informations in investigating the spatio-temporal variability In the study area.

Observation of the Mesoscale Phenomena by Ocean Acoustic Tomography in the East Sea (동해에서 해양음향토모그래피에 의한 중규모 현상 관측)

  • Na, Jung-Yul;Han, Sang-Kyu;Lee, Jae-Hak;Shim, Tae-Bo;Kim, Kuh
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.3
    • /
    • pp.170-179
    • /
    • 1999
  • The SUS (Signal, Underwater Sound)-OAT experiment was carried out in the Ulleung Basin of the East Sea on 3 June 1997. The SUS-OAT system consisted of aircraft deployed shots as sources and a vertical line array (VLA) tethered by a receiver ship was used to survey a large area where a mesoscale warm eddy appears frequently. The experiment was carried out such that explosive charges set to detonate at 800 ft depth were dropped in a rectangular ($120{\times}120$ km). Sources were a rapidly deployable SUS charge (MK 61 MOD 0), and receiver is a fixed VLA, 90 m in length (150-240 m in receiver depth), composed of 10 elements equally spaced. The reference ray paths are computed by range-dependent acoustic model in canonical ocean based on the historical data. The singular value decomposition (SVD) method is used to obtain the horizontal perturbation of the temperature fields. Horizontal distributions of temperature fields at 150 m and 200 m depth show a weak warm eddy observed by AXBT and the inversely estimated temperature shows similar patterns in terms of the location of the warm eddy. In conclusion, the SUS-OAT experiment has been successful to estimate the position of warm eddy and its temperature field in the East Sea of Korea.

  • PDF

Prevailing Subsurface Chlorophyll Maximum (SCM) Layer in the East Sea and Its Relation to the Physico-Chemical Properties of Water Masses (동해 전역에 장기간 발달하는 아표층 엽록소 최대층과 수괴의 물리 화학적 특성과의 상관관계)

  • Rho, TaeKeun;Lee, Tongsup;Kim, Guebuem;Chang, Kyung-Il;Na, TaeHee;Kim, Kyung-Ryul
    • Ocean and Polar Research
    • /
    • v.34 no.4
    • /
    • pp.413-430
    • /
    • 2012
  • To understand the scales of the spatial distribution and temporal duration of the subsurface chlorophyll-a maximum (SCM) observed in the Ulleung Basin of the East Sea, we analyzed physical and chemical data collected during the East Asian Seas Time-series-I (EAST-I) program. The SCM layer occurred at several observation lines from the Korea Strait to $37.9^{\circ}N$ in the Ulleung Basin during August of 2008 and 2011. At each observation line, the SCM layer extended from the coast to about 200 km off the coast. The SCM layer was observed between 30 and 40 m depth in the Ulleung Basin as well as in the northwestern Japan Basin along $132.3^{\circ}E$ from $38^{\circ}N$ to $42.3^{\circ}N$ during July 2009, and was observed around 50 m depth in the northeastern Japan Basin ($135-140^{\circ}E$ and $40-45^{\circ}N$) during July 2010. From these observed features, we hypothesize that the SCM layer observed in the Ulleung Basin may exist in most of the East Sea and may last for at least half-year (from the early May to late October). The nutrient supply mechanism for prolonged the SCM layer in the East Sea was not known, but it may be closely related to the horizontal advection of the nutrient rich and low oxygen waters observed in the Korea Strait between a 50 m depth to near the bottom. The prolonged development of the SCM layer in the Ulleung Basin may result in high primary production and would also be responsible for the high organic carbon content observed in the surface sediment of the region.