Browse > Article
http://dx.doi.org/10.7850/jkso.2019.24.2.298

Physical Characteristics and Classification of the Ulleung Warm Eddy in the East Sea (Japan Sea)  

SHIN, HONG-RYEOL (Department of Atmospheric Science, Kongju National University)
KIM, INGWON (Department of Atmospheric Science, Kongju National University)
KIM, DAEHYUK (Department of Atmospheric Science, Kongju National University)
KIM, CHEOL-HO (Ocean Circulation and Climate Research Center Korea Institute of Ocean Science & Technology)
KANG, BOONSOON (Ocean Research Division, Korea Hydrographic and Oceanographic Agency)
LEE, EUNIL (Ocean Research Division, Korea Hydrographic and Oceanographic Agency)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.24, no.2, 2019 , pp. 298-317 More about this Journal
Abstract
The physical characteristics of the Ulleung Warm Eddy (UWE) and its relationship with the East Korea Warm Current (EKWC) were analyzed using the CMEMS (Copernicus Marine Environment Monitoring Service) satellite altimetry data and the CTD data of the National Institute of Fisheries Science (NIFS) near the Ulleung Basin from 1993 to 2017. The distribution of the UWEs coupled with EKWC accounts for 81% of the total number of the UWEs. Only 7% of the total eddies are completely separated from the EKWC. The UWE has the characteristics of high temperature and high salinity water inside of it when it is formed from the EKWC. However, when the UWE is wintering, its internal structure changes greatly. In the winter, surface homogeneous layer of $10^{\circ}C$ and 34.2 psu inside of the UWE is produced by vertical convection from sea-surface cooling, and deepened to a maximum depth of approximately 250 m in early spring. In summer, the UWE changes into a structure with a stratified structure in the upper layer within a depth of 100 m and a homogeneous layer made in winter in the lower layer. 62 UWEs were produced for 25 years from 1993 to 2017. on average, 2.5 UWEs were formed annually, and the average life span was 259 days (approximately 8.6 months). The average size of the UWEs is 98 km in the east-west direction and 109 km in the north-south direction. The average size of UWE using satellite altimetric data is estimated to be 1~25 km smaller than that using water temperature cross-sectional data.
Keywords
Ulleung warm eddy; East Korea warm current; East Sea; Satellite altimeter data; CTD data;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Morrow, R., F. Birol, D. Griffin and J. Sudre, 2004. Divergent pathways of cyclonic and anti-cyclonic ocean eddies. Geophys. Res. Lett., 31: L24311, doi:10.1029/2004GL020974.   DOI
2 Nencioli, F., C. Dong, T. Dickey, L. Washburn and McWilliams, 2010. A vector geometry-based eddy detection algorithm and its application to a high resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Oceanic Technol., 27(3): 564-579.   DOI
3 Isern-Fontanet, J., E. Garcia-Ladona and J. Font, 2006. Vortices of the Mediterranean Sea: An Altimeteric Perspective. J. Physic. Oceanogr., 36: 87-103.   DOI
4 Isoda, Y. and S.I. Saitoh, 1993. The Northward Intruding Eddy along the East Coast of Korea. J. Oceanogr., 49: 443-458.   DOI
5 Katoh, O., 1994. Structure of the Tsushima Current in the southwestern Japan Sea. J. Oceanogr., 50: 317-338.   DOI
6 Kim, J.M., 2019. Influence of Dok Cold Eddy movement ont the East Korea Warm Current fluctuation. M.S. Thesis, Kunsan National University (in Korean), Kusan, 108 pp.
7 An, H., K.S. Shim and H.-R. Shin, 1994. On the warm eddies in the southwestern part of the East Sea (the Japan sea). J. Korean Society. Oceanogr., 29(2): 152-163.
8 Arruda, W., D. Nof and J.J. O'Brien, 2004. Does the Ulleung eddy owe its existence to beta and nonlinearities? Deep Sea Res. I, 51: 2073-2090.   DOI
9 Chaigneau, A., 2005. Eddy characteristics in the eastern South Pacitic. J. Geophys. Res., 110: C06005, doi:10.1029/2004JC002815.   DOI
10 Chaigneau, A., A. Gizolme and C. Crados, 2008. Mesoscale eddies off Peru in altimeter records: Identificatioin algorithms and eddy spatio-temporal patterns. Prog., Oceanogr., 79(2-4): 106-119.   DOI
11 Choi, B.J., D.S. Byun and K.H. Kang, 2012. Satellite-altimeter-derived East Sea surface currents: estimation, description and variability pattern. J. Korea. Soc. Oceanogr., 17: 225-242.
12 Chaigneau, A., G. Eldin and B. Deqitte, 2009. Eddy activity in the four major upwelling systems from satellite altimetry (1992-2007). Prog. Oceanogr., 83: 117-123.   DOI
13 Chelton, D.B., M.G. Schlax. R.M. Samelson and R.A. de Szo, 2007. Global observations of large oceanic eddies. Geophys. Res. Lett., 34: L15606, doi:10.1029/2007GL030812.   DOI
14 Chelton, D.B., M.G. Schlax, R.M. Samelson and T.A. de Szoeke, 2011. Global observations of nonlinear mesoscale eddies. Pro. Oceanogr., 91:167-216, doi:10.1016/j.pocean.2911.01.002.   DOI
15 Ichiye, T. and K. Takano, 1988. Mesoscale eddies in the Japan Sea. La Mer, 26: 69-76.
16 Isern-Fontanet, J., E. Garcia-Ladona and J. Font, 2003. Identification of marine eddies from altimetric maps. J. Atmos. Oceanic Technol., 20: 772-778.   DOI
17 Isern-Fontanet, J., J. Font, E. Garcia-Ladona, M. Emelianov, C. Millot and I. Taupier-Letage, 2004. Spatial structure of anticyclonic eddies in the Algerian basin (Mediterranean Sea) analyzed using the Okubo-Weiss parameter. Deep-Sea Res. II, 51: 3009-3028.   DOI
18 Sadarjeon, I.A. and F.H. Post, 2000. Detection, quantification, and tracking of vortices using streamline geometry. Comput. Graphics, 24: 333-341.   DOI
19 Park, J.J. and K. Kim, 2013. Deep currents obtained from Argo float trajectories in the Japan/East Sea. The Sea, Deep-Sea Res. II, 85: 169-181.   DOI
20 Park, K.-A., J.-E. Park, B.-J. Choi, D.-S. Byun and E.-I. Lee, 2013. An oceanic current map of the East Sea. The Sea, 18: 234-265.   DOI
21 Saraceno, M., P.T. Strub and P.M. Kosro, 2008. Estimates of sea surface height and near-surface alongshore coastal currents from combinations of altimeters and tide gauges. J.Geophys. Res., 113: C11013, doi:10.1029/2008JC004756.   DOI
22 Shin, H.R., C.-W. Shin, C. Kim, C.-K. Byun and S.C. Hwang, 2005. Movement and structural variation of warm eddy WE92 for three years in the Western East/Japan Sea. Deep-Sea Res. II, 52: 1742-1762.   DOI
23 Shin, H.-R., S.-K. Byun, C. Kim, S.C. Hwang and C.-W. Shin, 1995. The characteristics of the structure of a warm eddy observed to the northwest of Ulleungdo in 1992. J. Korean Society. Oceanogr., 30: 39-56 (in Korean with English abstract).
24 Lee, D.K. and P. Niiler, 2005. The energetic surface circulation patterns of the Japan/East Sea. Deep-Sea Res. II, 52 : 1547-1563.   DOI
25 Shin, H.-R., Y. Nagata and J. Yoshida, 1992. Detailed structure and water-type distribution of the warm-core ring 86B, September 1987. Deep-Sea Res. Part A, 39: S115-S130.   DOI
26 Tomosada, A., 1986. Generation and decay of Kuroshio warm corea rings. Deep-Sea Res., 33: 1475-1486.   DOI
27 Yasuda, I., K. Okuda and J. Li, 1992. Evolution of a Kuroshio warm-core ring variability of the hydrographic structure. Deep-Sea Res., 39(S1): S131-S161.   DOI
28 Lee, D.K. and P. Niiler, 2010a. Surface circulation in the southwestern Japan/East Sea as observed from drifters and sea surface height. Deep-Sea Res. I, 57: 1222-1232.   DOI
29 Lee, D.K. and P. Niiler, 2010b. Eddies in the southwestern East/Japan Sea. Deep-Sea Res. I, 57: 1233-1242.   DOI
30 Lee, G.H., 2010. Surface circulation in the East Sea from surface drifters and altimetry. M.S. Thesis, Kunsan National University, Gunsan, 106 pp.
31 Lee, G.J., 2013. Mesoscale eddies in the East/Japan Sea derived from low-resolution gridded altimeter data : Detection algorithms and chatacteristics of statistical eddy properties. M.S. Thesis, Seoul National University (in Korean with English abstract), Seoul, 71 pp.
32 Lie, H.J., S.K. Byun, I. Bang and C.H. Cho, 1995. Physical Structure of eddies in the southwestern East Sea. J. Korean Society. Oceanogr., 30(3): 170-183.
33 Mitchell, D.A., W.J. Taegue, M. Wimbush, D.R. Watts and G.G. Sutyrin, 2005. The Dok Cold Eddy. J. Physic. Oceanogr., 35: 273-288.   DOI
34 Matsuoka, D., F. Araki, Y. Inoue and H. Sasaki, 2016. A New Approach to Oean Eddy Detection, Tracking, and Ebent Visualization. Procedia Computer Science, 80: 1601-1611.   DOI