Structure of the Temperature and Salinity in 2003-2005 Profiled by the ARGO floats around the Ulleung-do area in the East Sea

ARGO 뜰개에 의한 2003-2005년 울릉도 주변 해역의 수온-염분 구조

  • Kim, Eung (Research Institute of Basic Sciences, Chungnam National University) ;
  • Ro, Young-Jae (Department of Oceanography, Chungnam National University) ;
  • Youn, Yong-Hun (Marine Meteorology & Earthquake Research Lab.)
  • 김응 (충남대학교 기초과학연구소) ;
  • 노영재 (충남대학교 해양학과) ;
  • 윤용훈 (기상연구소 해양지진기상실)
  • Published : 2006.02.01

Abstract

This study investigated the temperature-salinity spatio-temporal variability around the Ulleung-do Island (UI) by using CTD profiles obtained by the ARGO floats far the period of Oct.,2003 to Aug.,2005. The waterbody in the upper 700 m around the UI could be classified into five water masses, which is consistent to traditional water characteristics in the East Sea. In the upper surface layer, the temperature and salinity in fall season became even lower than those properties in the summer time. The East Sea Intermediate Water (ESIW) characterized by the salinity minimum layer shows the range of potential temperature between 1 to $5^{\circ}C$ and salinity lower than 34.06 psu. The ESIW lies approximately at 265 m depth with average thickness of 175 m. This thickness of the ESIW continues to be relatively uniform regardless of spatio-temporal space. However, the depth of the ESIW shows vertical variation influenced by the Ulleung warm eddy (UWE). Since the UWE lies in the upper layer, the Upper Portion of the Japan Sea Proper. Water (UPJSPW) is also affected to show the vertical variation. The influence extorted by the UWE reached down to 700 m depth in terms of temperature. The CTD profiles obtained with the high sampling rate by ARCO floats over two-year period provided with very useful and detailed informations in investigating the spatio-temporal variability In the study area.

본 연구는 2003년 10월부터 2005년 8월까지의 ARGO 뜰개에 의해 수집된 CTD 자료를 이용하여 울릉도 주변 해역의 수온-염분의 시공간 변동 양상을 분석하였다. 울릉도 주변 해역 상층 700m에서의 수괴는 5종류로 세분할 수 있으며, 가을 표층에는 여름의 고온저염수에 비해 더 저온저염화 된 수괴가 존재한다. 염분최소층을 갖는 동해중층수는 평균적으로 수심 265 m에 존재하며, 수온은 $1\~5^{\circ}C$염분 34.06 psu이하이고 평균 두께는 175m이다. 동해중층수의 두께는 시공간적으로 크게 변하지 않지만, 울릉난수성 소용돌이가 존재하는 경우 동해중층수의 위치 수심은 더 깊어지고, 이 영향으로 상부동해고유수의 수심 또한 저층으로 침강하게 된다. 본 자료에 의하면, 울릉난수성 소용돌이가 갖는 볼록렌즈 모양의 수온 구조는 700m수심까지 존재한다. ARGO 뜰개들이 수집한 약 2년의 측정 기간과 짧은 시간 간격의 수직 수온-염분 프로파일 자료는 연구 해역의 상세 수직 구조 및 단기 시간-공간 변동성을 이해하는데 대단히 유용하였다.

Keywords

References

  1. 국립수산과학원, 2005. 해양조사연보 제53권. 국립수산과학원, 285pp
  2. 기상연구소, 2002. 전 지구 해양/기후 변화 감시 및 예측에 관한 연구-ARGO자료 활용도 제고 기반 연구. 기상연구소, 141 pp
  3. 김철호, 1996. 동해 북서해역의 표층해황 특성. 한국해양학회지, 8: 215-220
  4. 신홍렬, 변상경, 김철수, 황상철, 신창웅, 1995. 1992년 울릉도 북서부해역에서 관측된 난수성 소용돌이의 구조 특성, 한국해양 학회지, 30: 39-56
  5. 이동섭, 김기현, 1998. $^{226}Ra$룹 이용한 이상 저염 대마난류수의 기원 추적 연구. 한국해양학회지-바다, 3: 175-182
  6. 이석우, 1992.한국근해해상지. 집문당, pp 128-131
  7. 오경희, 박영규, 석문식, 2004.자동수직물성관측뜰개(ARGO)로 얻은 수온과 염분의 정확도와 안정도.한국해양학회지-바다, 9: 204-211
  8. An, H. S., K. S. Shim, and H. R. Shin, 1994. On the warm eddies in the southwestern part ofthe East Sea (the Japan Sea). J. Oceanol. Soc. Korea, 29: 152-163
  9. Argo Science Team, 2000. Report of the Argo Science Team 2nd Meeting (AST-2) March 7-9, 2000, Southampton Oceanography Centre, Southampton, U.K
  10. Bacon, S., L. R.Centurioni, and W. J. Gould, 2001. The evaluation of salinity measurements from PALACE floats. J.Atmospheric and Oceanic Technology, 18: 1258-1266 https://doi.org/10.1175/1520-0426(2001)018<1258:TEOSMF>2.0.CO;2
  11. Bohrne, L., and U. Send, 2005. Objective analyses of hydrographic data for referencing profiling float salinities in highly variable environments. Deep-Sea Res. II, 52: 651-664 https://doi.org/10.1016/j.dsr2.2004.12.014
  12. Chang, K. I., W. J. Teague, S. J. Lyu, H. T. Perkins, D. K. Lee, D. R. Watts, Y. B. Kim, D. A. Mitchell, C. M. Lee, and K. Kim, 2004. Circulation and currents in the southwestern East/Japan Sea: Overview and review. Progress in Oceanography, 61: 105-156 https://doi.org/10.1016/j.pocean.2004.06.005
  13. Chapman, P., S. F. DiMarco, R. E. Davis, and A. C. Coward, 2003 Flow at intermediate depths around Madagascar based on ALACE float trajectories. Deep-Sea Res. II, 50: 1957-1986 https://doi.org/10.1016/S0967-0645(03)00040-7
  14. Delcroix, T. and R. Murtugudde, 2002. Sea surface salinity changes in the East China Sea during 1997-2001: Influence of the Yangtze River. J. Geophysical. Res., 107: 8008,doi:10.1029/2001JC000893
  15. Durand, F.,and G Reverdin, 2005. A Statistical Method for Correcting Salinity Observations from Autonomous Profiling Floats: An ARGO Perspective. J. Atmospheric and Oceanic Technology, 22: 292-301 https://doi.org/10.1175/JTECH1693.1
  16. Fischer, J., and F. A. Schott, 2002. Labrador Sea Water Tracked by Profiling Floats-From the Boundary Current into the Open North Atlantic. J. Physical Oceanography, 32: 573-584 https://doi.org/10.1175/1520-0485(2002)032<0573:LSWTBP>2.0.CO;2
  17. Freeland, H. J., and P. F. Cummins, 2005. Argo: A new tool for environmental monitoring and assessment of the world's oceans, an example from the N.E. pacific. Progress in Oceanography, 64: 31-44 https://doi.org/10.1016/j.pocean.2004.11.002
  18. Guinehut, L., P. Y. Le Traon, G Lamicol, S. Philipps, 2004. Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields-first approach based on simulated observations. J. Marine Systems, 46: 85-98 https://doi.org/10.1016/j.jmarsys.2003.11.022
  19. Isobe, A., M. Ando, T. Watanabe, T. Senjyu, S. Sugihara and A. manda, 2002. Freshwater and temperature transports through the Tsushima-Korea Straits. J. Geophysical Res., 107: doi:10.1029/ 2000JC000702
  20. Iwasaka N., T. Suga, K. Takeuchi, K. Mizuno, Y. Takatsuki et al., 2003. Pre-Japan-ARGO: Experimental Observation of Upper and Middle Layers South of the Kuroshio Extension Region Using Profiling Floats. J. Oceanography, 59: 119-127 https://doi.org/10.1023/A:1022880809737
  21. Iwao, T., M. Endoh, N. Shikama, and T. Nakano, 2003. Intermediate circulation in the northwestern North Pacific derived from subsurface floats. J. Oceanography, 59: 893-904 https://doi.org/10.1023/B:JOCE.0000009579.86413.eb
  22. Kang, D. J., S. C. Chang, H. K. Suk, K. R. Kim, H. H. Gi, 1997. Distribution of 137Cs and 239, 240Pu in the Surface Waters of the East Sea (Sea of Japan). Marine Pollution Bulletin, 35: 305-312 https://doi.org/10.1016/S0025-326X(97)00093-3
  23. Kim, K. and J. Y. Chung,1984. On the salinity-minimum and dissolved oxygen-maximum layer in the EAst Sea (Sea of Japan). In: Ocean hydrodynamics of the Japan and East China Seas, edited by Ichiye, T.,Elsevier Science Publisher, Amsterdam,pp 55-65
  24. Kim,K., Y G Kim,Y K.Cho, M. Takematsu, and Y. Volkov,1999. Basin-to-Basin and Year-to-Year variation of temperature and salinity characteristics in the East Sea (sea of Japan). J. Oceanography, 55: 103-109 https://doi.org/10.1023/A:1007873525552
  25. Kim, Y-G and K. Kim,1999. Intermediate waters in the East/Japan Sea. J. Oceanography, 55: 123-132 https://doi.org/10.1023/A:1007877610531
  26. Lavender, K. L., W. B. Owens, and R. E. Davis, 2005. The mid-depth circulation of the subpolar North Atlantic Ocean as measured by subsurface floats. Deep-Sea Res. I, 52: 767-785 https://doi.org/10.1016/j.dsr.2004.12.007
  27. Ohno, Y, Y Sato, and N. Iwasaka, 2004. The mixed layer depth in the North Pacific as detected by the ARGO floats. OCEANS '04. MTTSIIEEE TECHNO-OCEAN '04, 1491-1495
  28. Oka, E. and K. Ando, 2004. Stability of temperature and conductivity sensors of ARGO profiling floats. J. Oceanography, 60: 253-258 https://doi.org/10.1023/B:JOCE.0000038331.10108.79
  29. Ro, Young Jae, 2001. Interactions of Coastal Boundary Currents with Mesoscale Eddies in the East Sea, pp 75-88 in Recent Advances in Marine Science and Technology edited by N. Saxena, Pacon International 2001, Isbn 0-9634343-4-9
  30. Senjyu, T. and H. Sudo, 1994. The upper portion of the Japan Sea Proper Water; its source and circulation as deduced from isopycnal analysis. J. Oceanography, 50: 663-690 https://doi.org/10.1007/BF02270499
  31. Senjyu T., 1999. The Japan Sea intermediate water; Its characteristics and circulation. J. Oceanography, 55: 111-122 https://doi.org/10.1023/A:1007825609622
  32. Shin, C. W., S. K. Byun, C. S. Kim, and Y. H. Seung, 1998. Southward intrusion of the East Sea Intermediate Water into the Ulleung basin: Observations in 1992 and 1993. J. Oceanol. Soc. Korea, 33: 146-156
  33. Shimizu, Y., T. Iwao, I. Yasuda, S-I, Ito, T. Watanabe, K. Uehara, N. Shikama, and T. Nakano, 2004. Formation Process of North Pacific Intermediate Water Revealed by Profiling Floats Set to Drift on 26.7s Isopycnal Surface. J. Oceanography, 60: 453-462 https://doi.org/10.1023/B:JOCE.0000038061.55914.eb
  34. Wong, A. P. S., G. C. Johnson, and W. B. Owens, 2003. DelayedMode Calibration of Autonomous CTD Profiling Float Salinity Data by -S Climatology. J. Atmospheric and Oceanic Technology, 20: 308-318 https://doi.org/10.1175/1520-0426(2003)020<0308:DMCOAC>2.0.CO;2
  35. Yanagimoto, D., and K. Taira, 2003. Current measurements of the Japan Sea proper water and intermediate water by ALACE floats. J. Oceanography, 59: 359-368 https://doi.org/10.1023/A:1025572112019