Browse > Article
http://dx.doi.org/10.7850/jkso.2019.24.2.351

Migration of the Dokdo Cold Eddy in the East Sea  

KIM, JAEMIN (Department of Oceanography, Chonnam National University)
CHOI, BYOUNG-JU (Department of Oceanography, Chonnam National University)
LEE, SANG-HO (Department of Architecture Ocean Construction Convergence Engineering, Kunsan National University)
BYUN, DO-SEONG (Ocean Research Division, Korea Hydrographic and Oceanographic Agency)
KANG, BOONSOON (Ocean Research Division, Korea Hydrographic and Oceanographic Agency)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.24, no.2, 2019 , pp. 351-373 More about this Journal
Abstract
The cold eddies around the Ulleung Basin in the East Sea were identified from satellite altimeter sea level data using the Winding-Angle method from 1993 to 2015. Among the cold eddies, the Dokdo Cold Eddies (DCEs), which were formed at the first meandering trough of the East Korea Warm Current (EKWC) and were pinched off to the southwest from the eastward flow, were classified and their migration patterns were analyzed. The vertical structures of water temperature, salinity, and flow velocity near the DCE center were also examined using numerical simulation and observation data provided by the Hybrid Coordinate Ocean Model and the National Institute of Fisheries Science, respectively. A total of 112 DCEs were generated for 23 years. Of these, 39 DCEs migrated westward and arrived off the east coast of Korea. The average travel distance was 250.9 km, the average lifespan was 93 days, and the average travel speed was 3.5 cm/s. The other 73 DCEs had moved to the east or had hovered around the generated location until they disappeared. At 50-100 m depth under the DCE, water temperature and salinity (T < $5^{\circ}C$, S < 34.1) were lower than those of ambient water and isotherms made a dome shape. Current faster than 10 cm/s circulates counterclockwise from the surface to 300 m depth at 38 km away from the center of DCE. After the EKWC separates from the coast, it flows eastward and starts to meander near Ulleungdo. The first trough of the meander in the east of Ulleungdo is pushed deep into the southwest and forms a cold eddy (DCE), which is shed from the meander in the south of Ulleungdo. While a DCE moves westward, it circumvents the Ulleung Warm Eddy (UWE) clockwise and follows U shape path toward the east coast of Korea. When the DCE arrives near the coast, the EKWC separates from the coast at the south of DCE and circumvents the DCE. As the DCE near the coast weakens and extinguishes about 30 days later after the arrival, the EKWC flows northward along the coast recovering its original path. The DCE steadily transports heat and salt from the north to the south, which helps to form a cold water region in the southwest of the Ulleung Basin and brings positive vorticity to change the separation latitude and path of the EKWC. Some of the DCEs moving to the west were merged into a coastal cold eddy to form a wide cold water region in the west of Ulleung Basin and to create a elongated anticlockwise circulation, which separated the UWE in the north from the EKWC in the south.
Keywords
Dokdo cold eddy; Ulleung warm eddy; East Korea warm current; Satellite altimeter data; Meandering; East Sea;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chang, K.I., W.J. Teague, S.J. Lyu, H.T. Perkins, D.K. Lee, D.R. Watts, Y.B. Kim, D.A. Mitchell, C.M. Lee and K. Kim, 2004. Circulation and current in the southwestern East/Japan Sea: overview and review. Prog. Oceanogr., 61: 105-156.   DOI
2 Chelton, D.B. and M.G. Schlax, 2003. The accuracies of smoothed sea surface height fields constructed from tandem altimeter datasets. J. Atmos. Oceanic Technol., 20: 1276-1302.   DOI
3 Choi, B.J., D.B. Haidvogel and Y.K. Cho, 2004. Nonseasonal sea level variations in the Japan/East Sea from satellite altimeter data. J. Geophy. Res., 109: C12028, doi:10.1029/2004JC002387.   DOI
4 Choi, B.J., D.S. Byun and K.H. Lee, 2012. Satellite-altimeter-derived East Sea Surface Currents: Estimation, Description and Variability Pattern. The Sea, 17: 225-242.   DOI
5 Mittelstaedt, E., 1987. Cyclonic cold-core eddy in the eastern North Atlantic. I. Physical Description. Marine Ecology, 39: 145-152.   DOI
6 Richardson, P.L., 1983. Eddy kinetic energy in the North Atlantic Ocean from surface drifters. J. Geophys. Res., 88: 4355-4367.   DOI
7 Morimoto, A., T. Yanagi and A. Kaneko, 2000. Eddy field in the Japan Sea derived from satellite altimetric data. J. Oceanogr., 56: 449-462.   DOI
8 Pascual, A., Y. Faugere, G. Larnicol and P.-Y. Le Traon, 2006. Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys. Res. Lett., 33: doi:10.1029/2005GL024633.   DOI
9 Pichevin, T., H. Steven and F. France, 2009. Eddy Formation and Shedding in a Separating Boundary Current. J. Phys. Oceanogr., 39: 1921-1934.   DOI
10 Sadarjoen, I.A. and F.H. Post, 2000. Detection, quantification, and tracking of vortices using streamline geometry. Comput. Graphics, 24: 333-341.   DOI
11 Saraceno, M., P.T. Strub and P.M. Kosro, 2008. Estimates of sea surface height and near-surface alongshore coastal currents from combinations of altimeters and tide gauges. J. Geophys. Res., 113: C11013, doi:10.1029/2008JC004756.   DOI
12 Wyrtki, K., L. Magaard and J. Hager, 1976. Eddy energy in the oceans. J. Geophys. Res., 81: 2641-2646.   DOI
13 Gordon, A.L., C.F. Giulivi, C.M. Lee, A. Bower, H.H. Furey and L. Talley, 2002. Japan/East Sea Intra-thermocline eddies. J. Phys Oceanogr., 32: 1960-1974.   DOI
14 Hu, J., J. Gan, Z. Sun, J. Zhu and M. Dai, 2011. Observed three dimensional structure of a cold eddy in the southwestern South China Sea. J. Geophys. Res., 116: C05016, doi:10.1029/2010JC006810.   DOI
15 Kang, H.E and Y.Q. Kang, 1990. Spatio-Temporal characteristics of the Ulleung Warm Lens. Bull. Korean Fish. Soc., 23: 407-415.
16 Mitchell, D.A., M. Wimbush, D.R. Watts and W.J. Teague, 2004. The residual GEM technique and its application to the southwestern Japan/East Sea. J. Atmos. Oceanic Technol., 21: 1895-1909.   DOI
17 Kim, Y.H., K.I. Chang, J.J. Park, S.K. Park, S.H. Lee, Y.G. Kim, K.T. Jung and K. Kim, 2009. Comparison between a reanalyzed product by 3-dimensional variational assimilation technique and observations in the Ulleung Basin of the East/Japan Sea. J. Marine Syst., 78: 249-264.   DOI
18 Lee, D.K and P.P. Niller, 2005. The energetic surface circulation patterns of the Japan/East Sea. Deep-Sea Res. II, 52: 1547-1563.   DOI
19 Lee, D.K and P.P. Niller, 2010. Eddies in the southwestern East/Japan Sea. Deep-Sea Res. I, 57: 1233-1242, doi:10.1016/j.dsr.2010.06.002.   DOI
20 Lee, S.H., D.S. Byun, B.J. Choi and E. Lee, 2009. Estimation of the surface currents using mean dynamic topography and satellite altimeter data in the East Sea. The Sea, 14: 195-204.
21 Mitchell, D.A., D.R. Watts, M. Wimbush, K.L. Tracey, W.J. Teague, J.W. Book, K.I. Chang, M.S. Suk and J.H. Yoon, 2005a. Upper circulation patterns in the Ulleung Basin. Deep-Sea Res. II, 52: 1617-1638.
22 Mitchell, D.A., W.J. Teague, M. Wimbush, D.R. Watts and G.G. Sutyrin, 2005b. The Dok Cold Eddy. J. Phys. Oceanogr., 35: 273-288.   DOI
23 Arruda, W.Z., D. Nof and J.J O'Brien, 2004. Does the Ulleung eddy owe its existence to ${\beta}$ and nonlinearities?. Deep-Sea Res. I, 51(12): 2073-2090.   DOI
24 Chaigneau, A., A. Gizolme and C. Grados, 2008. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr., 79: 106-119.   DOI
25 Chaigneau, A., G. Eldin and B. Deqitte, 2009. Eddy activity in the four major upwelling systems from satellite altimetry (1992-2007). Prog. Oceanogr., 83: 117-123.   DOI