• Title/Summary/Keyword: 운행관리

Search Result 349, Processing Time 0.024 seconds

A Study on the Estimation of Proper Construction Cost for Road Pavement Maintenance Work (아스팔트포장 유지보수 적정공사비 산정방안 연구)

  • Oh, JaeHun;Song, TaeSeok;An, BangYul
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.6
    • /
    • pp.16-26
    • /
    • 2020
  • Road Pavement Maintenance Work is generated in a variety of different field conditions, and it is difficult to calculate the construction cost because there are no detailed criteria when preparing the estimated construction cost. Unlike new pavements, Road Pavement Maintenance has to be constructed with operating vehicles, and there are many differences in productivity depending on urban areas, limited work hours, night-time, construction area, etc. To compensate for this, the standard for calculation of construction cost provides additional charges for the number of lanes, residential areas, working hours, and night work, but it applied differently depending on construction officials. In this study, construction cost estimation standards that can properly reflect the conditions of the site was investigated for major types of Road Pavement Maintenance work. The site was investigated and analyzed mainly for many construction sites with 'overlay of asphalt after cutting', 'restore surface', 'repair of pavement', and 'recovery of roadway'. The criteria for the application of construction volume separately according to working hours, public places, and land area including extra charges for basic downtown and residential area. The hours of operation were divided into three types(7 hours, 5 hours, 3 hours) excluding movement and preparation time, and each type provided a coefficient for dividing the area of the construction site into five types. The construction cost calculation method based on the construction purpose is site conditions is proposed accordingly, and it is deemed that a plan for the designer to calculate the construction cost has been prepared in consideration of the site conditions.

Characteristics of Pollutant Washed-off from Highways with Storm Runoff Duration (아스팔트 포장 고속도로의 강우 지속시간별 오염물질 유출 경향)

  • Kim Lee-Hyun;Lee Eun-Ju;Ko Seok-Oh;Kang Hee-Man
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.99-106
    • /
    • 2006
  • During the dry periods, many types of pollutant are accumulating on the paved surface by vehicle activities. Particularly, the highways are stormwater intensive landuses because of high imperviousness and high pollutant mass emissions from vehicles. The accumulated pollutants in highways are washed-off during a rainfall event and are highly contributing on water quality of receiving water bodies. The stormwater runoff from the highways are containing various pollutants such as metals, oil & grease and toxic chemicals originated from vehicles. Therefore, this research is performed to find pollutant characteristics in the magnitude of statistical pollutant concentrations during storm periods. During the monitoring periods, the first-flush phenomenon is visibly occurred on most storm events, which is confirmed from hydro- and pollute-graphs. The 95% confidence intervals of washed-off pollutant concentration are ranged to 154.7-257.1 mg/L for 755,138.9-197.6 mg/L for COD, 3.5-6.4 mg/L for oil & grease, 6.3-9.2 mg/L for TN and 2.3-3.31 mg/L for TP. The first flush effect is mostly occurred within initial 30 min of storm duration.

  • PDF

Study on Optimization for Construction Vertical Lifting with Transfer Operation for Super High-rise Buildings (초고층 건축공사의 리프트 수직 환승운영 최적화 방안 연구)

  • Moon, Jooyong;Park, Moonseo;Lee, Hyunsoo;Jung, Minhyuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.6
    • /
    • pp.53-62
    • /
    • 2014
  • Recently, the number of super high-rise building projects have been increased after recovering from international financial crisis. In super high-rise building project, vertical lifting is critical to overall project productivity, due to its limited lifting equipments. Also for projects which buildings' height are higher than 400m, transfer operation in lifting is inevitable because of lifts' maximum lifting height. In transfer operation, setting a transfer floor is essential for saving lifting time of resources. In this research, using discrete event simulation modeling with AnyLogic 7.0 software and metaheuristic optimization with OptQuest software, the method of optimizing a transfer floor for workers during the morning peak time is proposed. Comparing to the result of the case which transfer floor is designated to the middle floor, setting optimized transfer floor significantly decrease the total lifting time of workers. By using proposed simulation and optimization tool, saving budget and time through increasing available working hour is expected.

Risk analysis for sidetrack construction during subway tunnel operation (기존 지하철 터널 운영 중 대피선 건설 시공 리스크 분석)

  • Jun, Jonghun;Chung, Heeyoung;Koh, Sung-Yil;Yoon, Hee Taek;Yi, Na Hyun;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.401-417
    • /
    • 2020
  • As an increasing demand for rapid railway transportation, the construction of sidetrack is inevitable to operate local and express trains simultaneously. However, the current technologies for the sidetrack construction method require a long construction period by interrupting the operation of the existing subway line, as well as cause a huge economic loss. Thus, it is necessary to study the sidetrack construction method under the special situation that the subway is in operation and to analyze the risk of the existing tunnel enlargement process for the sidetrack construction. Therefore, in this paper, the Government Complex Gwacheon station on Subway Line 4 was considered as a target station for the virtual sidetrack construction and the optimal sidetrack construction plan was derived. Subsequently, the application of risk management process was carried out in the order of identifying risk, risk response planning, performing a risk analysis, risk monitoring and control for potential risk events during the construction of sidetrack under the subway operation. A total of eight potential risk events and risk mitigation methods were selected, and a risk assessment matrix was established using the five-step risk probability and impact level criteria to perform the risk assessment including residual risks. Based on the results of the risk assessment, the risk grade and the reduction effect of each risk mitigation method were confirmed.

Development of System Requirement Management Database System from User-centered Scenario (사용자 편의를 고려한 시스템 요구사항 관리 데이터베이스 구축)

  • Jin, Moon-Sub;Park, Chan-Young;Choi, Chunho;Chung, Kyung-Ryul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.199-204
    • /
    • 2013
  • In this paper, a new system requirement management tool and its application on the Urban Transit Maglev Project were introduced. In most R&D projects on complexity system such as transportation system, Systems Engineering(SE) activities are included on each project, and SE teams are using commercial computer-based tools to perform the SE activities. Even though SE tools help to manage huge data and documents on engineering efficiently, but well-designed functions of SE tools which support SE activities are not sufficiently used on the whole process of system engineering. In order to computer-based SE tools are to be effectively used on project management, most engineers who takes engineering and coordination roles, at least sub-project managers should be familiar to the tool and could be easily use it, but usability of commercial SE tools are very difficult for normal engineers with no experience on SE activities and SE tools. To overcome this difficulty, we developed a new system requirement management tool considering each user's scenario on using engineering tools. The developed tool could not cover whole SE processes, but designed to perform requirement engineering such as system requirements(SRs) management, specification management, traceability management, SRs' verification activity management and so on. All the entities on SR database are inter-connected by pre-recognized traceabilities, so even non-specialists on SE can easily browse the database and find entities concern, and linked information such as interacted entities, legal or engineering constraints, coordination documents, status of development and verification and so on. Also functions for SR verification tools, TPM(Technical Performance Measure) tools, DB searching tools with traceability, and report generation tools are included on the system.

A Study on the Vibration Characteristics of Subway Structure by Train Load (열차 하중에 의한 지하철 구조물의 진동 특성에 관한 연구)

  • Park, Sung Woo;Park, Seung Su;Hwang, In Baek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.107-115
    • /
    • 2011
  • In this study, the vibration analysis of the underground box structures induced train movement is studied. In order to perform these analysis, dynamic data, which was measured when subway is in service, are gained by attaching accelerometers on the structure such as lower beam, lateral wall and upper slab. Also, accelerometers are attached on the lower beams and side walls of the gravel ballast and concrete ballast sections in order to compare vibration due to ballast materials. The vibration results of upper slabs and lower beams reveal that the vibration on the upper slabs is greater than the lower beams. Also, the results of the crack gauge on the upper slab show that crack width dose not change due to vibration, These means that the effect of the vibration on the structure is very limited. In order to evaluate the vibration of the structure, acceleration unit is converted to velocity unit comparing with the existing velocity data gained from the platforms.

Correlation Analysis between Dynamic Wheel-Rail Force and Rail Grinding (차륜-레일 상호작용력과 레일연마의 상관관계 분석)

  • Park, Joon-Woo;Sung, Deok-Yong;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.234-240
    • /
    • 2017
  • In this study, the influences of rail surface roughness on dynamic wheel-rail forces currently employed in conventional lines were assessed by performing field measurements according to grinding of rail surface roughness. The influence of the grinding effect was evaluated using a previous empirical prediction model for dynamic wheel-rail forces; model includes first-order derivatives of QI (Quality Index) and vehicle velocity. The theoretical dynamic wheel-rail force determined using the previous prediction equation was analyzed using the QI, which decreased due to rail grinding as determined through field measurements. At a constant track support stiffness, an increase in the QI caused an increase in dynamic wheel-rail forces. Further, it can be inferred that the results of dynamic wheel-rail analysis obtained using the measured data, such as the variation of QI due to rail grinding, can be used to predict the peak dynamic forces. Therefore, it is obvious that the optimum amount of rail grinding can be determined by considering the QI, that was regarding an operation characteristics of the target track (vehicle velocity and wheel load).

The Improvement of Electrical Point Machine Wiring Set (선로전환기(NS)의 배선세트 개선)

  • Jeong, Rag-Gyo;Park, Gun-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.351-358
    • /
    • 2016
  • An Electrical Point Machine (NS:New-type Switch), which is equipped and operated at railways in Korea, has been used since the 1960s after being imported from Japan. On the other hand, although the mechanical configuration has improved the position motor control circuit, the electrical connection has not been improved, so NS may have a problem, such as the interlocking system of automatic train operation. In addition, NS is the most vulnerable part in the railway system and a huge train accident may occur due to minor defects. The existing NS wiring set of the circuit controller should be checked only if fixed. Therefore, an excessive inspection time only by a Railroad Signal expert is required. In this paper, the improvement of electrical connection in a NS wiring set, such as the position motor control circuit, was developed and the prototype was installed at Seoul Metro in the distance to go section. The results can be used to help make appropriate adjustments. The improvement of the NS wiring set enhance the maintenance efficiency, passenger service and the stability of the signal system as well as reducing the maintenance cost.

Research and Application of Fault Prediction Method for High-speed EMU Based on PHM Technology (PHM 기술을 이용한 고속 EMU의 고장 예측 방법 연구 및 적용)

  • Wang, Haitao;Min, Byung-Won
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.6
    • /
    • pp.55-63
    • /
    • 2022
  • In recent years, with the rapid development of large and medium-sized urban rail transit in China, the total operating mileage of high-speed railway and the total number of EMUs(Electric Multiple Units) are rising. The system complexity of high-speed EMU is constantly increasing, which puts forward higher requirements for the safety of equipment and the efficiency of maintenance.At present, the maintenance mode of high-speed EMU in China still adopts the post maintenance method based on planned maintenance and fault maintenance, which leads to insufficient or excessive maintenance, reduces the efficiency of equipment fault handling, and increases the maintenance cost. Based on the intelligent operation and maintenance technology of PHM(prognostics and health management). This thesis builds an integrated PHM platform of "vehicle system-communication system-ground system" by integrating multi-source heterogeneous data of different scenarios of high-speed EMU, and combines the equipment fault mechanism with artificial intelligence algorithms to build a fault prediction model for traction motors of high-speed EMU.Reliable fault prediction and accurate maintenance shall be carried out in advance to ensure safe and efficient operation of high-speed EMU.

A Study on Virtual Environment Platform for Autonomous Tower Crane (타워크레인 자율화를 위한 가상환경 플랫폼 개발에 관한 연구)

  • Kim, Myeongjun;Yoon, Inseok;Kim, Namkyoun;Park, Moonseo;Ahn, Changbum;Jung, Minhyuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.4
    • /
    • pp.3-14
    • /
    • 2022
  • Autonomous equipment requires a large amount of data from various environments. However, it takes a lot of time and cost for an experiment in a real construction sites, which are difficulties in data collection and processing. Therefore, this study aims to develop a virtual environment for autonomous tower cranes technology development and validation. The authors defined automation functions and operation conditions of tower cranes with three performance criteria: operational design domain, object and event detection and response, and minimum functional conditions. Afterward, this study developed a virtual environment for learning and validation for autonomous functions such as recognition, decision making, and control using the Unity game engine. Validation was conducted by construction industry experts with a fidelity which is the representative matrix for virtual environment assessment. Through the virtual environment platform developed in this study, it will be possible to reduce the cost and time for data collection and technology development. Also, it is also expected to contribute to autonomous driving for not only tower cranes but also other construction equipment.