• Title/Summary/Keyword: 운전특성인자

Search Result 155, Processing Time 0.037 seconds

Field application on biological treatment process for removing 1,4-dioxane (1,4-dioxane 제거를 위한 생물학적 처리공정의 현장 적용성 검토)

  • Park, Doori;Lee, Kanghun;Jun, Moonhwee;Yeom, Icktae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.283-283
    • /
    • 2015
  • 1,4-dioxane은 페인트, 광택제 및 코팅제의 제조시에 첨가되는 화학물질로 인간에 대한 발암 가능성과 수중에서의 지속성으로 인해 EPA priority pollutant로 지정되어 있다. 이에 최근 고도산화법을 이용한 처리가 계속적으로 연구되고 있으며, UV/$H_2O_2$ 공법을 통하여 수계에서 발견되는 난분해성 유기 오염물의 제거가 효과적인 것으로 밝혀졌다. 하지만 고도산화공정(AOP)은 다량의 에너지 소모와 산화제 투여로 인한 높은 운전비용이 현실적인 적용에 장애가 되고 있다. 한편 상대적으로 저렴한 비용으로 1,4-dioxane을 처리할 수 있다는 장점으로 인하여 생물학적 분해에 대한 많은 연구가 진행되어 왔다. 하지만, 1,4-dioxane에 대한 많은 연구들이 주로 분해미생물의 분리동정 및 회분식 분해특성에 대한 연구들 위주로 보다 실질적인 연속적 처리반응조의 운전결과들은 거의보고 되지 않고 있다. 본 연구는 Lab scale 연속처리반응조의 장기운전 후 pilot plant 현장적용에 앞서 인공폐수와 합성폐수에서의 분해효율 비교 회분식 실험을 통해 합성폐수내 생물학적 분해에 영향을 미치는 inhibitor의 영향을 확인하였으며, 미생물의 배양 조건에 따른 분해효율 비교 회분식 실험과 modeling을 통하여 현장운영 효율을 예측하였다. 이를 반영하여 추후 진행예정인 pilot plant의 현장 적용성 검토 및 최적 설계인자 도출, 장기운전에서의 효율성 증대를 목적으로 한다.

  • PDF

양어장수의 암모니아 제거시 포괄고정화 미생물의 질산화 속도식 도출

  • 이정훈;김병진;서근학
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.324-325
    • /
    • 2001
  • 총 암모니아성 질소(TAN)은고밀도 양식에서 한계요소로 작용하는 수질인자 중의 하나이다. 생물학적 암모니아 처리공정의 효율적인 설계를 위해서는 생물반응기의 암모니아 제거속도식을 구하여 처리시스템의 최적 용량을 구하여야 한다. 그러나 현재까지 진행된 고정화 미생물을 이용한 암모니아 제거공정에 대한 연구는 고정화 재질의 특성이나 장치의 운전효율에 대한 것으로 속도식에 대한 연구는 부족하다. (중략)

  • PDF

Characteristics of Combustion and Emission for Synthetic Natural Gas in CNG Engine (CNG엔진에서 합성가스 연료의 연소 및 배기 특성 평가)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.8-14
    • /
    • 2015
  • Synthetic natural gas(SNG), acquired from coal, is regarded as an alternative to natural gas since a rise in natural gas due to high oil price can be coped with it. In the present study, 11-liter heavy duty compressed natural gas(CNG) engine was employed in order to examine the combustion and emission characteristics of SNG. The simulated SNG, made up 90.95% of methane, 6.05% propane and 3% hydrogen was used in the experiment. Power output, thermal efficiency, combustion stability and emission characteristics were compared to those with CNG at the same engine operating conditions. Knocking phenomenon was also analyzed at 1260 rpm, full load condition. Combustion with SNG was more stable than CNG. Nitrogen oxides emissions increased while Carbon dioxides emissions decreased. Anti-knocking characteristics were improved with SNG.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Pig Manure and Food Waste(III): Design and Operation Guideline (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(III) 설계 및 운전 지침(안) 중심으로)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.99-111
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. Based on the results obtained during the field surveys, the overall design and operation guidelines for bio-gasification facilities, monitoring items, cycle and commissioning period were presented. According to the flow of anaerobic digestion process, Various design factors for bio-gasification facilities were proposed in this study. When designing the initial anaerobic digestion capacity, 10 ~ 30% of the treatment capacity was applied considering the discharge characteristics by the incoming organic wastes. At the import storage hopper process, limit concentration of transporting organic wastes was limited to TS 10 % or less, and limit concentration of inhibiting factor was suggested in operation of anaerobic digester. In addition, organic loading rate (OLR) was shown as $1.5{\sim}4.0kgVS_{in}/(m^3{\cdot}day)$ for the combined bio-gasification facilities of animal manure and food wastes. Desulfurization and dehumidification methods of biogas from anaerobic digestor and proper periods of liquifization tank were suggested in design guideline. It is recommended that the operating parameters of the biogasification facilities to be maintained at pH (acid fermentation tank 4.5~6.5, methane fermentation tank 6.0~8.0), temperature variation range within $2^{\circ}C$, management of volatile fatty acid and ammonia concentration less than 3,000 mg/L, respectively.

Evaluation of Pilot scale Coagulation system Design for CSOs treatment (CSOs 처리를 위한 실증규모 응집침전시스템의 설계평가)

  • Lee, Seung-Chul;Ha, Sung-Ryong
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • A pilot scale coagulation system, which has a function of physicochemical treatment, was developed to treat Combined sewer overflows(CSOs). This coagulation system requires evaluation of optimum design factors whether it has reflected those of lab scale system, moreover, the pilot scale system can be evaluated differently according to the characteristics of influent CSOs even though it has reflected lab scale's design factors. We conducted an experiment using lab scale system that could treat $1m^3$ of CSOs in a day, and also pilot-scale system with $100m^3/day$ CSOs flowed into the Cheongju sewage treatment plant. Therefore the aim of this study is to evaluate a hydraulic similarity between the design factors of pilot scale and those of lab scale coagulation system, and to evaluate feasibility of the coagulation system for the CSOs treatment with optimum operation conditions. From the result of pilot-test, we drew the optimum operation factors of in line mixer and flocculator having similarities with those of lab scale system as well as the optimum coagulant dose. Finally we confirmed that the coagulation system has feasibility to treat the CSOs with high removal efficiency.

Numerical Study on Cavitation Reduction in Velocity-Control Trim of Valve with High Pressure Drop (고차압 밸브의 속도제어형 트림에서 케이테이션 억제에 관한 수치적 연구)

  • Kim, Dae Kwon;Sohn, Chae Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.863-871
    • /
    • 2013
  • Flow characteristics of velocity-control trim in a valve is investigated numerically with high pressure drop. A basic trim widely used for a valve in domestic powerplants is selected and designed for a baseline of velocity-control trim. The numerical analysis is focused on flow rate and cavitation with the basic trim. For a condition of high-pressure drop, pressure drop between inlet and outlet and fluid temperature are selected to be 18.1 MPa and $160^{\circ}C$, respectively, which are typical ones considering operating conditions adopted in powerplants. With this baseline model and condition, design changes are made for improvement of flow rate and cavitation phenomenon. For re-design, trim is divided into three zones in radial direction and design parameters of flow area, stage, and flow direction are considered in each zone. With these combined parameters applied to each zone, 4 models with design changes are proposed and their flow rates and cavitation areas are investigated. From comparison with those in the baseline model of a basic trim, proposed models show better performance in both flow rate and cavitation.

A Study on the Hydraulic Characteristics of Rashig Super-Ring Random Packing in a Counter-Current Packed Tower (역류식 충전탑에서 Raschig Super-ring Random Packing의 수력학적 특성에 대한 연구)

  • Kang, Sung Jin;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.102-108
    • /
    • 2020
  • In recent years, packed column has been widely used in separation processes, such as absorption, desorption, distillation, and extraction, in the petrochemical, fine chemistry, and environmental industries. Packed column is used as a contacting facility for gas-liquid and liquid-liquid systems filled with random packed materials in the column. Packed column has various advantages such as low pressure drop, economical efficiency, thermally sensitive liquids, easy repairing restoration, and noxious gas treatment. The performance of a packed column is highly dependent on the maintenance of good gas and liquid distribution throughout a packed bed; thus, this is an important consideration in a design of packed column. In this study, hydraulic pressure drop, hold-up as a function of liquid load, and mass transfer in the air, air/water, and air-NH3/water systems were studied to find the geometrical characteristic for raschig super-ring experiment dry pressure drop. Based on the results, design factors and operating conditions to handle noxious gases were obtained. The dry pressure drop of the random packing raschig super-ring was linearly increased as a function of gas capacity factor with various liquid loads in the Air/Water system. This result is lower than that of 35 mm Pall-ring, which is most commonly used in the industrial field. Also, it can be found that the hydraulic pressure drop of raschig super-ring is consistently increased by gas capacity factor with various liquid loads. When gas capacity factor with various liquid loads is increased from 1.855 to 2.323 kg-1/2 m-1/2 S-1, hydraulic pressure drop increases around 17%. Finally, the liquid hold-up related to packing volume, which is a parameter of specific liquid load depending on gas capacity factor, shows consistent increase by around 3.84 kg-1/2 m-1/2 S-1 of the gas capacity factor. However, liquid hold-up significantly increases above it.

Derivation and Analysis of Dimensionless Parameters Dominating the Dehumidification Characteristics of a Desiccant Rotor (제습로터의 운전특성을 재배하는 무차원 인자의 도출과 해석)

  • Lee Gilbong;Kim Min Soo;Lee Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.7
    • /
    • pp.611-619
    • /
    • 2005
  • In a previous work of the authors, the heat and mass transfer in a desiccant rotor was analyzed theoretically through linearization assumptions and four dimensionless parameter groups dominating the dehumidification process were arranged. In this work is verified whether the four dimensionless parameters also play the dominant roles in more realistic situations where the nonlinear factors affect the heat and mass transfer. The results show that the dehumidification characteristics are closely similar to each other as long as the four dimensionless parameters have the same set of values while the rotor configurations and/or the operation conditions are different from each other. The four dimensionless parameters are $\Psi,\;\chi,\;\sigma$ and N, where $\Psi$ implies the average gradient of relative humidity lines in the psychrometric chart, $\chi$ the heat capacity of the rotor and $\sigma$ the sorption capacity of the rotor, and N implies the number of transfer unit.

Water Treatment Characteristics by Foam Separator According to Operation Parameters (포말분리공정의 운전인자 변화에 따른 수처리 특성)

  • 허현철;김성구
    • Journal of Life Science
    • /
    • v.8 no.5
    • /
    • pp.504-508
    • /
    • 1998
  • A study was conducted to evaluate a protein removal characteristics by foam separation. The foam separator was operated in well-mixed tank which would be considered as a completely mixed condition. The feasibility of foam separation to remove protein from fresh and sea water was investigated. Protein removal characteristics of the foam separator were obtained by batch reactor operations. To find the effect of the operating parameter to protein removal rate, the foam separation was carried with variation of initial protein concentration and foam height. The results indicated that the protein removal efficiency was increased with increasing protein concentration and decreased with increasing foam height. The relationship between protein concentration and protein removal rate was evaluated by linear regression.

  • PDF

$\b{W}$형 3-Loop 발전소에 대한 일체형 가연성 흡수봉 경제성 평가

  • 박상원;장도익;정선교
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.213-218
    • /
    • 1996
  • 가압 경수로의 노심설계에 있어서 제한된 우라늄 자원의 효율적인 이용을 위한 다양한 방안으로 장주기 운전, 고 방출연소도 및 저누출 장전모형 등을 강구하고 있는 추세이다. 이러한 노심들은 원자로 운전주기 전반에 걸친 공간적 출력 분포 제어와 잉여반응도 제어를 위해 가연성 흡수봉을 사용하고 있으며 이와 관련 하여 가연성 흡수봉에 대한 전략등이 다 각도로 검토되고 있으며 다양한 노심에 대한 최적의 가연성 흡수봉 혹은 그 전략에 대해 많은 연구가 진행되고 있다. 본 연구에서는 웨스팅하우스형 3-Loop 발전소에 대해, 장주기 (18 개월-480 EFPD), 저누출 장전 모형 전략을 채용하여, Er$_2$O$_3$, Gd$_2$O$_3$, ZrB$_2$의 일체형 가연성 흡수봉에 대한 노심특성 및 경제성을 평형노심개념을 적용, KNFC가 노심설계에 사용하고 있는 APA(ALPHA/PHOENIX-P/ANC) 8.0.0 코드 체계를 이용하여 평가하였다. 노심특성에 대해서는 감속재 온도계수, 첨두출력인자, 잔존흡수봉효과 및 노심 연소거동에 대한 평가가 수행되었고, 동일한 주기길이(480 EFPD) 에 대한 우라늄 적재량에 대해 원광비, 변환비, 농축비, 가공비 그리고 이자율 등을 고려하여 핵주기 경제성 평가 코드인 POCO 코드를 이용하여 경제성을 평가하였다.

  • PDF