DOI QR코드

DOI QR Code

고차압 밸브의 속도제어형 트림에서 케이테이션 억제에 관한 수치적 연구

Numerical Study on Cavitation Reduction in Velocity-Control Trim of Valve with High Pressure Drop

  • 투고 : 2013.03.25
  • 심사 : 2013.07.17
  • 발행 : 2013.09.01

초록

본 수치적 연구에서는 국내의 발전소에서 사용되는 일반적인 고차압 트림의 형상 중 대표적으로 사용되는 형상의 트림을 기본형 트림으로 정하여, 이를 설계한 후 캐비테이션과 유량의 관점에서 유동 특성을 살펴보았다. 실제로 운전되는 발전소계통의 운전조건을 참고하여 고차압 조건으로서 입 출구 차압을 18.7 MPa로, 온도를 $160^{\circ}C$로 설정하였다. 트림의 주요 설계 인자로서 유로의 면적, 유로의 단(stage)과 유로의 방향을 채택하여, 유량과 케비테이션 발생 특성을 개선하기 위해 기본형 트림을 재설계하였다. 개선을 위해 트림을 반경방향으로 세 영역으로 나눈 후 각 영역에서 재설계 인자를 이용하여 형상을 변경하였다. 4가지의 재설계 모델을 제안하였으며, 각 모델 형상에 대한 수치해석을 수행하였다. 유량 및 캐비테이션 발생량의 관점에서 기본형 트림과 설계개선 트림들을 비교하여 재설계 모델의 성능이 개선되었음을 확인하였다.

Flow characteristics of velocity-control trim in a valve is investigated numerically with high pressure drop. A basic trim widely used for a valve in domestic powerplants is selected and designed for a baseline of velocity-control trim. The numerical analysis is focused on flow rate and cavitation with the basic trim. For a condition of high-pressure drop, pressure drop between inlet and outlet and fluid temperature are selected to be 18.1 MPa and $160^{\circ}C$, respectively, which are typical ones considering operating conditions adopted in powerplants. With this baseline model and condition, design changes are made for improvement of flow rate and cavitation phenomenon. For re-design, trim is divided into three zones in radial direction and design parameters of flow area, stage, and flow direction are considered in each zone. With these combined parameters applied to each zone, 4 models with design changes are proposed and their flow rates and cavitation areas are investigated. From comparison with those in the baseline model of a basic trim, proposed models show better performance in both flow rate and cavitation.

키워드

참고문헌

  1. Skousen, P. L., 2005, Valve Handbook, Mc-Graw Hill, New York.
  2. Yan, Y. and Thorpe, R. B., 1990, "Flow Regime Transitions due to Cavitation in The Flow Through an Orifice," International Journal of Multiphase Flow, Vol 16, Issue 6, pp. 1023-1045. https://doi.org/10.1016/0301-9322(90)90105-R
  3. Kang, M. K, 2008, "A Study on Characteristics of Cavitation Formation in a Globe Valve with Cages Hole Size of Different Geometry," Master Thesis, Chungnam National University.
  4. Ahn, Y. J., Kim, B. J. and Shin, B. R., 2007, "Numerical Analysis on Flow Characteristics of High Pressure Drop Control Valve with Anti-Cavitation Trim," Journal of Korean Fluid Machinery Association, Vol. 10, No. 4, pp. 61-70. https://doi.org/10.5293/KFMA.2007.10.4.061
  5. Kim, D. K. and Sohn, C. H., 2010, "A Numerical Study on Flow Characteristics in Elementary Paths of a Velocity-Control Trim," Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 3, pp. 245-253. https://doi.org/10.3795/KSME-B.2011.35.3.245
  6. Alexandrou, A., 2002, Principles of Fluid Mechanics, Prentice-Hall, New Jersey, USA.
  7. Menter, F. R., Kuntz, M., and Langtry, R., 2003, "Ten years of Industrial Experience With the SST turbulence Model," in Turbulence Heat and Mass Transfer 4 (Edited by K. Hangalic, Y. Nagano, and M. Tummers), Begell House Inc., New York, pp. 625-632.
  8. ANSYS Inc, 2009, CFX User Manual, Ver. 12, Southpointe.
  9. ANSYS Inc, 2009, CFX Advanced Turbulance Models, Southpointe.
  10. Mentor, F., Ferreira, J. C., Esch, T. and Konno, B., 2003, "The SST Turbulence Model with Improved Wall Treatment for Heat Tranfer Predictions in Gas Turbines," Proceedings of the International Gas Turbine Congress, IGTC-2003-TS-059.
  11. Kim, D. K., 2011, " A Numerical Study on Anti-Cavitaion Trim in a Globe Valve of High Pressure Drop," Master Thesis, Sejong University.

피인용 문헌

  1. Numerical Analysis of Flow Distribution in the Scaled-down APR+ Using Two-Equation Turbulence Models vol.27, pp.4, 2015, https://doi.org/10.6110/KJACR.2015.27.4.220
  2. Shape Optimization of Three-Way Reversing Valve for Cavitation Reduction vol.39, pp.11, 2015, https://doi.org/10.3795/KSME-A.2015.39.11.1123
  3. Shape design of the bottom plug used in a 3-way reversing valve to minimize the cavitation effect vol.17, pp.3, 2016, https://doi.org/10.1007/s12541-016-0050-8