• Title/Summary/Keyword: 우주 파편

Search Result 64, Processing Time 0.029 seconds

NORAD TLE 및 정밀 궤도정보를 이용한 운용위성-우주파편 간의 충돌 불확실성 해소 방안

  • Choe, Su-Jin;Jeong, Ok-Cheol;Kim, Hae-Dong;Jeong, Dae-Won;Kim, Hak-Jeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.40.3-41
    • /
    • 2009
  • 인류가 위성을 발사하기 시작하면서 수많은 우주파편이 발생하게 되었고 이로 인하여 우주파편 환경은 날이 갈수록 심각해지고 있다. 우주공간을 비행하는 우주물체는 분쇄된 파편, 임무 관련 파편, rocket body 그리고 운용위성으로 구분된다. U.S. Space Surveillance Network에 따르면 10cm 이상 크기를 갖는 물체는 현재 13,000개가 넘는다고 알려지고 있고 질량만 해도 6,000톤이 넘는다. 이런 우주파편 환경으로 인하여 우주파편 간의 충돌, 우주파편과 운용위성 간의 충돌 또는 운용위성 간의 충돌에 대한 우려가 꾸준히 제기되어왔고, 불행하게도 2009년 2월 10일 Iridium 33과 Cosmos 2251 위성이 고도 790km 부근에서 충돌하여 1,300여개의 우주파편이 발생했다. 또한 2007년에 중국이 고도 860km 부근에서 750kg에 해당하는 자국의 위성(FY-1C)을 미사일로 격추시킴에 따라 2500여개의 우주파편이 발생하여 저궤도의 우주파편 환경을 더욱 심각하게 만들고 있다. 운용위성과 우주파편과의 충돌 가능성을 분석하기 위해서는 우주파편 및 위성의 궤도정보를 알아야 한다. 이를 위해서 NORAD(North American Aerospace Defense Command)에서 제공하는 TLE(Two Line Element)가 주로 이용된다. 하지만 관측 및 궤도 결정 특성상 수 km의 오차를 포함하므로 궤도정보의 공분산이 크다는 단점이 있으므로 충돌 분석을 수행하는데 있어 한계가 있다. 이 논문은 충돌분석 수행에 있어 TLE 정보만을 이용한 경우뿐만 아니라 정밀궤도와 TLE를 동시에 이용한 경우를 비교함으로써 충돌 불확실성의 해소방안을 제시할 계획이다.

  • PDF

Recent Status on Active Space Debris Removal Technologies (우주파편 능동제거 기술 연구개발 동향 분석)

  • Kim, Hae-Dong;Kim, Min-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.845-857
    • /
    • 2015
  • Recently, deterioration of space environment due to space debris is getting a lot of international attention and advanced countries in space technology are willing to comply with their space debris mitigation guidelines. With these efforts to reduce the number of space debris, active space debris removal technology means to try and to get rid of space debris directly. In this paper, the background and recent status on active space debris removal technologies of overseas agencies are presented. Also, cases of technology development and patents are introduced. Thus, this paper can be usefully referred to by the colleagues who are willing to start the research and development of active space debris removal technologies.

Statistical Conjunction Analysis between KOMPSAT-2 and Space Debris (아리랑 2호와 우주파편간의 충돌가능성 분석)

  • Jung, In-Sik;Choi, Su-Jin;Chung, Dae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.78-85
    • /
    • 2012
  • Space debris is the collection of objects in orbit around the Earth that were created by humans but no longer serve any useful purpose. Since the beginning of spacecraft launch in 1957, the number of space debris has been increasing. According to USSTRATCOM, the number of space debris which were bigger than 10 cm is more than 15,000. Recently there were two critical events: One is that China shot down their satellite using missile and the other is that two satellite, United States's Iridium 33 and Russia's Cosmos 2251, collided with each other. Thanks to these events, Space environment in which KOMPSAT-2 operates has become severer. This paper presents the analysis of the number of space debris which are close to KOMPSAT-2 and the maximum conjunction probability via minimum range. Especially, this paper makes it possible to continuously monitor the space debris that is possible to hit KOMPSAT-2 through the identification and analysis.

Current Status of Space Debris and Introduction of the KARI Conjunction Assessment Process (우주파편 현황 및 항우연의 우주파편 충돌평가 방법 소개)

  • Choi, Su-Jin;Jung, In-Sik;Chung, Dae-Won
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.55-63
    • /
    • 2011
  • Space debris is the collection of objects in orbit around Earth that were created by humans but no longer serve any useful purpose. Since plenty of spacecrafts were launched in space after 1957, the number of space debris has been increased. According to USSTRATCOM, the number of space debris which are bigger than 10cm is more than 15,000. Recently two critical events were occurred. Which one was that China shot down their satellite using missile and the other was that t o satellite, Iridium 33 and Cosmos 2251, collided in space. Space debris environment in which KOMPSAT-2 is operating has been severe. This paper presents the status of space debris and international activity, and the comparison of conjunction assessment process between Korea Aerospace Research Institute and abroad satellite operation center.

  • PDF

Analysis of the Collision Probability and Mission Environment for Space debris (아리랑 위성 2호와 5호의 우주파편에 대한 충돌확률 및 임무환경 분석)

  • Seong, Jae-Dong;Min, Chan-Oh;Lee, Dae-Woo;Cho, Kyeum-Rae;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1144-1151
    • /
    • 2010
  • The increasing number of orbital debris objects is a risk for satellites because of past 50 years space activities. The LEO (low earth orbit) where KOMPSAT-2 and KOMPSAT-5 are operated is including about 84% of the total space debris. Thus, the space missions need to consider the space debris. In this paper, we analysis the orbit characteristics and spatial density of space debris about KOMPSAT-2 that is in activity and KOMPSAT-5 that will be launched in 2010. Analyzed probability damage and collision with space debris are also performed. ESA MASTER2005 and of NASA DAS2.0 are used to analysis KOMPSAT mission environment. As a result, it is noted that KOMPSAT-2's collision probability was far more than KOMPSAT-5 because KOMPSAT-2's orbit has high density composed space debris.

Analysis of the KARISMA Orbit Determination Performance for the Radar Tracking Data (우주파편 충돌위험 종합관리 시스템의 레이더 관측 데이터 처리 결과 비교 분석)

  • Cho, Dong-Hyun;Kim, Hae-Dong;Lee, Sang-Cherl
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • Many countries tried to design the collision risk management system to protect their own satellites from collision probability due to the space debris. In this situation, KARI(Korea Aerospace Research Institute) is developing the KARISMA(KARI Conjunction Risk Management System) to protect our operating satellites from these space debris. The quality of this system is depending on the accuracy of orbit determination for the space debris which has collision risk. Therefore, this system must treat many kinds of measurement data types to estimate the orbit of space debris. In this paper, to handle the radar observation data widely used for these space debris, the orbit determination system was applied with simulated radar tracking data for the KOMSAT-2 which has precise orbit determination data.

An Analysis of CSM orbit for Conjunction Assessment of Space Debris (우주파편 충돌분석을 위한 CSM 궤도데이터 분석)

  • Choi, Su-Jin;Kim, Hae-Dong;Jung, Ok-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.164-171
    • /
    • 2013
  • Since plenty of spacecrafts were launched in space after 1957, the number of space debris has been increased. According to the JSpOC, the number of space debris which diameter is bigger than 10 cm are more than 22,000. Recently there were two critical events. Which one is that China shot down their satellite using missile and the other is that two satellite, Iridium and Cosmos 2251, collied. Space environment in low-earth orbit has been severe. JSpOC analyzes the collision risk between 15,000 space debris and all operation satellites and then they send CSM to the satellite operator to utilize its orbital information if collision risk might be occurred. This paper analyzes the CSM orbit data by comparing with KOMPSAT-2 precise orbit data and shows conjunction assessment results.

ANALYSTS OF DAMAGE PROBABILITY FOR COLLISION BETWEEN SPACE DEBRIS AND A SATELLITE IN LOW-EARTH ORBIT (우주파편에 의한 저궤도 위성의 손상확률 분석)

  • Lee, Jae-Eun;Park, Sang-Young;Kim, Young-Rok;Choi, Kyu-Hong;Kim, Eung-Hyun;Kim, Gyu-Sun
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.2
    • /
    • pp.135-144
    • /
    • 2007
  • Space environment becomes more hazardous for satellite because of increasing number of space debris. This research is to analyze collision hazards between KOMPSAT 3 in low-earth orbit and space debris generated by the explosion of FengYun satellite on the January 11, 2007. Based on the observed data of the space debris from FengYun satellite, the mass and number distribution of the debris are estimated including undetectable debris from the explosion of FengYun satellite. The spatial density and flux for the space debris can be calculated according to size. This study also brings out the analysis for the assessment of collision probability and damage probability. The algorithm developed in the current paper can be used to estimate the level of risk due to space debris for the satellites that will be launched in the future.

Development of Survivability Analysis Program for Atmospheric Reentry (지구 재진입 파편 생존성 분석 프로그램 개발)

  • Sim, Hyung-Seok;Choi, Kyu-Sung;Ko, Jeong-Hwan;Chung, Eui-Seung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.156-165
    • /
    • 2015
  • A survivability-analysis program has been developed to analyze the ground collision risk of atmospheric reentry objects, such the upper stages of a launch vehicle or satellites, which move at or near the orbital velocity. The aero-thermodynamic load during the free fall, the temperature variation due to thermal load, and the phase shift after reaching the melting point are integrated into the 3 degree-of-freedom trajectory simulation of the reentry objects to analyze the size and weight of its debris impacting the ground. The analysis results of the present method for simple-shaped objects are compared with the data predicted by similar codes developed by NASA and ESA. Also, the analysis for actual reentry orbital objects has been performed, of which results are compared with the measurement data.

A Study on the Deep Neural Network based Recognition Model for Space Debris Vision Tracking System (심층신경망 기반 우주파편 영상 추적시스템 인식모델에 대한 연구)

  • Lim, Seongmin;Kim, Jin-Hyung;Choi, Won-Sub;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.794-806
    • /
    • 2017
  • It is essential to protect the national space assets and space environment safely as a space development country from the continuously increasing space debris. And Active Debris Removal(ADR) is the most active way to solve this problem. In this paper, we studied the Artificial Neural Network(ANN) for a stable recognition model of vision-based space debris tracking system. We obtained the simulated image of the space environment by the KARICAT which is the ground-based space debris clearing satellite testbed developed by the Korea Aerospace Research Institute, and created the vector which encodes structure and color-based features of each object after image segmentation by depth discontinuity. The Feature Vector consists of 3D surface area, principle vector of point cloud, 2D shape and color information. We designed artificial neural network model based on the separated Feature Vector. In order to improve the performance of the artificial neural network, the model is divided according to the categories of the input feature vectors, and the ensemble technique is applied to each model. As a result, we confirmed the performance improvement of recognition model by ensemble technique.