DOI QR코드

DOI QR Code

Statistical Conjunction Analysis between KOMPSAT-2 and Space Debris

아리랑 2호와 우주파편간의 충돌가능성 분석

  • 정인식 (과학기술연합대학원대학교) ;
  • 최수진 (한국항공우주연구원 저궤도위성관제팀) ;
  • 정대원 (한국항공우주연구원 저궤도위성관제팀)
  • Received : 2011.09.26
  • Accepted : 2011.12.08
  • Published : 2012.01.01

Abstract

Space debris is the collection of objects in orbit around the Earth that were created by humans but no longer serve any useful purpose. Since the beginning of spacecraft launch in 1957, the number of space debris has been increasing. According to USSTRATCOM, the number of space debris which were bigger than 10 cm is more than 15,000. Recently there were two critical events: One is that China shot down their satellite using missile and the other is that two satellite, United States's Iridium 33 and Russia's Cosmos 2251, collided with each other. Thanks to these events, Space environment in which KOMPSAT-2 operates has become severer. This paper presents the analysis of the number of space debris which are close to KOMPSAT-2 and the maximum conjunction probability via minimum range. Especially, this paper makes it possible to continuously monitor the space debris that is possible to hit KOMPSAT-2 through the identification and analysis.

우주파편이란 지구궤도에 있는 인간이 만든 물체 중 더 이상 유용한 목적으로 사용할 수 없는 물체를 말한다. 우주파편은 1957년 인류가 우주에 위성을 보내기 시작한 이후로 그 숫자가 증가하고 있으며, 현재 미 전략사령부(USSTRATCOM, United States Strategic Command)에 의하면 10cm 이상의 우주파편이 15,000개 이상이라고 알려지고 있다. 최근에는 중국이 자국의 위성을 미사일로 요격시킨 사건과 미국 Iridium 33 위성 및 러시아 Cosmos 2251 위성이 우주상공에서 서로 충돌한 사건이 발생함에 따라 아리랑 2호가 운영중인 저궤도에서의 우주파편 환경이 나빠졌다. 본 논문에서는 우주파편이 아리랑 2호에 근접하는 회수 및 최소근접거리에 따른 최대충돌확률의 분포를 분석하였다. 특히 아리랑 2호와 충돌할 가능성이 있는 우주파편을 식별 및 분석하여 해당 우주파편을 지속적으로 감시 할 수 있게 하였다.

Keywords

References

  1. "Orbital Debris Quarterly News, 2011. Issue 1", www.space-track.org
  2. L.K Newman, "The NASA robotic conjunction assessment process : overview and operational experiences", 59th International Astronautical Congress, Scotland, United Kingdom, 2008.
  3. T. Flohrer, H. Krag, H. Klinkrad, "ESA's process for the identification and assessment of high-risk conjunction events", Advanced In Space Research, 2009.
  4. T. Laporte, E. Sasot, "Operational management of collision risks for LEO satellites at CNES", SpaceOps 2008 Conference, Heidelberg, Germany, 2008.
  5. Ikumi Matsuda, Chikako Hirose, Nobuo Kudo, "The JAXA Conjunction Assessment Process", SpaceOps 2010 Conference, Alabama, U.S., 2010.
  6. www.agin.com/products/by-product-type/applications/stk/add-on-modules/stk-conjunction-analysis-tools/default.aspx
  7. S. Alfano, "Relating Position Uncertainty to Maximum Conjunction Probability", The Journal of the Astronautical Sciences, Vol. 53, No.2, April-June 2005, pp.193-205.
  8. Chan, F. Kenneth, "Spacecraft Collision Probability", The Aerospace Press, 2008, pp.1-12.
  9. Heiner Klinkrad, "Space Debris Models and Risk Analysis", Praxis Publishing Ltd, 2006
  10. Choi, S. J., Jung, O. C., Park, S. J., Chung, D. W., Chun, Y. S., Kim, H. J., "Automated Conjunction Analysis System and Basic Concept of Contingency Operation for KOMPSAT-2", 60th International Astronautical Congress, Daejeon, Korea, 2009.

Cited by

  1. An Analysis of three-dimensional collision probability according to approaching objects to the KOMPSAT series vol.41, pp.2, 2013, https://doi.org/10.5139/JKSAS.2013.41.2.156