• Title/Summary/Keyword: 우라늄 함량

Search Result 82, Processing Time 0.028 seconds

Uranium Concentrations in Groundwater of the Goesan Area, Korea (괴산지역 지하수의 우라늄 함량)

  • Cho, Byong-Wook
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.353-361
    • /
    • 2017
  • Uranium concentration in groundwater of the Goesan area was anticipated high because the area contains Ogcheon metamorphic rock zone which partly includes coal bed bearing high uranium content and nearly half of the area is covered by granitic rocks. Groundwater samples collected from 250 wells in five 5 lithology (Ogcheon meta-sandy rock zone (Og1), Ogcheon lower phyllite zone (Og2), Ogcheon pebble bearing phyllite zone (Og3), Jurassic granite (Jgr), Cretaceous granite (Kgr)), of the area were analyzed and equivalent uranium concentrations (e(U)) from 200 rocks near sampled wells were measured using portable gamma spectrometry. Higher median value of e(U) (8.2 mg/kg) was found on Kgr outcrops. The median e(U) value of Og2 was not as high as that of Kgr and similar to those of Jgr, Og1, and Og3 (3.05~3.90 mg/kg). The uranium level in groundwater of the area ranged from 0.01 to $293.0{\mu}g/L$ with a median value of $0.87{\mu}g/L$ which is similar to the national median uranium level of $0.74{\mu}g/L$. The uranium concentration was high in the samples from the Kgr (median $4.74{\mu}g/L$) and low samples from the Og1, Og2, and Og3 (median $0.35{\sim}0.74{\mu}g/L$). The percentage of total samples having uranium level above $30{\mu}g/L$ was 2.8%, on the other hand, that of Kgr is 20.7%, reflecting additional survey on the Kgr area is needed.

Hydrochemistry of Groundwater in the Uraniferous Sedimentary Rocks of the Ogcheon Belt, Republic of Korea (옥천대 우라늄 광화대 부근 퇴적암 지하수의 수리화학적 특성)

  • Hwang, Jeong
    • Journal of the Korean earth science society
    • /
    • v.31 no.3
    • /
    • pp.205-213
    • /
    • 2010
  • A hydrochemical comparative study of groundwater in uraniferous sedimentary rock of the Ogcheon belt was carried out to investigate the genetic relationship between uraniferous groundwater of Daejeon area and uraniferous sedimentary rocks of the Ogcheon zone. The groundwater shows weak alkaline pH values rangingfrom 6.4 to 8.1 and low Eh values ranging from -50 to 225 mV. The groundwaters to Ca-$HCO_3$ type that shows high concentration of $Ca^{2+}$ and $HCO_3^_$ due to the dissolution of carbonate mineral in limestone. The concentration of uranium in the groundwater was measured very low below $3.2{\mu}g/L$, while it was detected as much as $1165{\mu}g/L$ in the mine waste water. The low Eh value of groundwater is one of the main causes of low uranium concentration of groundwater in uraniferous sedimentary rocks in the Ogcheon belt. It is suggested that the uranium of groundwater in granitic region of Daejeon area was not mainly provided from uraniferous sedimentary rocks in the Ogcheon belt.

Uranium Levels in Groundwater of CGS (Community Groundwater System) of Korea (국내 마을상수도 지하수의 우라늄 함량)

  • Cho, Byong-Wook;Kim, Moon-Su;Kim, Dong-Su;Hwang, Jae-Hong
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.543-551
    • /
    • 2018
  • The uranium concentrations were determined in groundwater collected from 3,820 community groundwater system (CGS) located in remote rural areas where access to the nationwide water work is not easy. The frequency distribution of uranium concentrations shows a lognormal distribution which is common in most radionuclide surveys. The measured maximum uranium concentration was $1,757.0{\mu}g/L$ with an average of $6.46{\mu}g/L$ and a median of $0.76{\mu}g/L$. When grouping the uranium concentration results of CGS into 10 geological units, the median uranium concentration was high ($0.99-2.05{\mu}g/L$) in three granite areas, and low in sedimentary rocks areas and porous volcanic rocks areas ($0.04-0.50{\mu}g/L$). Of the 3,820 samples, 3.8% are above the guideline value of $30{\mu}g/L$ (WHO, 2011). On the other hand, the exceeding rates of JGRA and PGRA CGS are 8.5% and 7.5%, respectively. Therefore, attention should be paid for the development of new CGS along with the management of the existing CGS in JGRA and PGRA areas.

Hydrogeochemical Characterization of Natural Radionuclides Uranium and Radon in Groundwater, Jeonnam Province (전라남도 일대 지하수 중에서 산출하는 자연방사성물질 우라늄과 라돈의 수리지구화학적 거동특징)

  • Cho, Byong Wook;Kim, Moon Su;Kim, Hyun Gu;Hwang, Jae Hong;Cho, Soo Young;Choo, Chang Oh
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.501-511
    • /
    • 2017
  • Natural radionuclides such as uranium and radon from 170 groundwater wells in Jeonnam Province were investigated, together with hydrogeochemical properties, and concentration maps of uranium and radon were also constructed in this study. Characteristics of their concentrations and occurrence were discussed using hydrogeochemical factors and geostatistical methods based on individual geological units. Though uranium and radon in groundwater show a wide range in the concentration, most of which occur as low levels except a few sites. Based on factor analysis, correlation coefficients between uranium and radon are very low. Such results verify that these radionuclides behave independently, well consistent with most previous results investigated nationwide in groundwater. Besides uranium and radon, most hydrochemical components in groundwater show a close relation to indicate the water-rock interaction taken place actively in aquifer.

Uranium and Radon Concentrations in Groundwater of the Daejeon Granite Area: Comparison with Other Granite Areas (대전 화강암지역 지하수의 우라늄과 라돈 함량: 다른 화강암지역과의 비교)

  • Yun, Uk;Kim, Moon Su;Jeong, Do Hwan;Hwang, Jae Hong;Cho, Byong Wook
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.631-643
    • /
    • 2018
  • Uranium and radon concentrations in groundwater from 80 wells from Daejeon area were measured to determine the range of concentrations according to the geology. The median uranium content of groundwater was $11.14{\mu}g/L$ for the two-mica granite, $0.90{\mu}g/L$ for the biotite granite, and $0.47{\mu}g/L$ for the Ogcheon group. The median radon content of groundwates was 114.3 Bq/L for the two-mica granite, 61.6 Bq/L for the biotite granite, and 42.2 Bq/L for the Ogchon group, respectively. The uranium content of two-mica granite is 3.78 mg/ kg, which is slightly higher than that of biotite granite 3.20 mg/kg. However, the uranium content in groundwatewr of two-mica granite groundwater is much higher than that of biotite granite. This can be explained by the fact that the two-mica granite is vulnerable to weathering than biotite granite, so uranium in mineral is easily leached into groundwater. The exceeding rate of samples having uranium content above $30{\mu}g/L$ in granite area was 23.8%, which is higher than that of 6.7% in Jurassic granite in Korea. On the other hand, the exceeding rate of samples having radon content above 148 Bq/L in granite rate area was 31.0% which is similar to that of Jurassic granite area of 31.7%.

Characteristics of Uraniferous Minerals in Daebo Granite and Significance of Mineral Species (대보화강암내 함우라늄 광물의 산출특징과 존재형태의 중요성)

  • 추창오
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.11-21
    • /
    • 2002
  • A mineralogical study was made in order to identify the relationship between uranium content in groundwater and rock chemistry using core rocks recovered from the drilling holes for wells in the Daebo Granite areas. Uraniferous minerals are of primary origin and occur as inclusions in accessory minerals such as zircon, monazite, and xenotime. Since the uraniferous minerals are very small to be 1 ~ 2 $\mu$m in size, it is difficult to distinguish their mineralogical species precisely. The frequent presence of dissolution cavities or dissolved textures in the accessory minerals suggests that uraniferous minerals dissolved partially and contributed to the groundwater chemistry. Because there is no clear relationship between host rocks and groundwater for uranium concentration, mineralogical characteristics of uraniferous minerals, together with aqueous geochemical conditions favorable for uranium dissolution, could play important roles in groundwaster chemistry.

Uranium and Radon Concentrations in Groundwater near the Icheon Granite (이천 화강암지역 지하수의 우라늄과 라돈 함량 특성)

  • Cho, Byong-Wook;Choo, Chang-Oh;Kim, Moon-Su;Lee, Young-Joon;Yun, Uk;Lee, Byeong-Dae
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.259-269
    • /
    • 2011
  • Concentrations of uranium (U) and radon (Rn) were measured in groundwater from 74 wells in the Icheon area, with the aim of determining the range and distribution of concentrations in an area underlain by granite (in this case, the Icheon granite). U concentrations ranged from 0.02 to 1,640.0 ${\mu}g/L$ (median value, 2.03 ${\mu}g/L$) and Rn concentrations ranged from 40 to 23,400 pCi/L (median value, 4,649 pCi/L). U concentrations in 10.8% of the samples exceeded 30 ${\mu}g/L$, which is the maximum contaminant level (MCL) proposed by the US Environmental Protection agency (EPA), based on the chemical toxicity of U. In addition, U concentrations in 59.5% and 13.5% of the samples exceeded 4,000 pCi/L (the Alternative MCL (AMCL) of the US EPA) and 8,100 pCi/L (Finland’s guideline level), respectively. We found no significant correlations between U (Rn) and other constituents, except for U-$HCO_3$ (correlation coefficient of 0.71), U-Ca (0.69), U-Li (0.45), U-Sr (0.43), and U-F (0.42). U and Rn contents in the groundwater are low relative to those in areas in other countries with similar geological settings, possibly due to the inflow of shallow groundwater to the wells in the Icheon area.

Occurrence of U-minerals and Source of U in Groundwater in Daebo Granite, Daejeon Area (대전지역 대보 화강암내 우라늄 광물의 산출상태와 지하수내 우라늄의 기원)

  • Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.399-407
    • /
    • 2013
  • Some groundwater in Korea contains high U concentrations, especially where two-mica granite occurs in the Daejeon area. The elemental U in the two-mica granite is lower than that in normal granites elsewhere in the world, and U-minerals have yet to be reported in the two-mica granite in the Daejeon area. This study focuses on investigating the occurrence of U-minerals serving as the U source in groundwater. In situ gamma ray spectrometry and mineralogical analyses using EPMA were performed. U-count anomalies were identified in a granitic dyke and in hydrothermally altered granite. Uraniferous granitic dykes occur along the contact zone between the two-mica granite and mica-schist. The uraniferous parts within the two-mica granite are developed in the hydrothermally altered zone, which contains numerous quartz veinlets within a fracture zone. Hydrothermal alteration is dominated by potassic and prophylitic alteration. Uraninite is a common U-mineral in granitic dykes and hydrothermally altered granite. Coffinite and uranophane occur in the hydrothermally altered granite. All of these U-minerals are commonly accompanied by hydrothermal alteration minerals such as muscovite, chlorite, epidote, and calcite. It is concluded that granitic dyke and hydrothermally altered granite are the main source rocks of U in groundwater.

Uranium Levels in Soil and Plant, and Estimation of Its Intake by the Residents at the Uranium Deposited Area (우라늄광 부근에서 우라늄의 토양 및 식물체중 함량과 주민들에 의한 체내 집적량추정)

  • U, Zang-Kual;Song, Ki-Joon;Kim, Tai-Soon
    • Applied Biological Chemistry
    • /
    • v.22 no.4
    • /
    • pp.221-226
    • /
    • 1979
  • The soils and plants were sampled from 26 sites of Deogpyeongri, Goisangun, which had been found to be one of the uranium deposit areas. Uranium levels of the samples were determined and the amount of uranium intake by the residents through the food-chains was estimated. The average uranium concentration of Deogpyeongri soils was 15.5ppm with a range of from 4.9 to 43.6ppm showing rather higher values than those of control area, Yangjugun and Icheongun, Gyeonggi-do. The average uranium content of the plant samples from Deogpyeongri was 0.69ppm, about twice the uranium concentration of the control samples. The daily intake of uranium by an adult lived on the agricultural food stuffs produced in Deogpyeongri, was estimated to be about $247{\mu}g$, eqivalent to $0.83{\times}10^{-4}{\mu}Ci$, which is much higher activity compared to the daily intake of uranium by New York citizen, $1.3{\mu}g$. However the calculated uranium level accumulated in the human body of Deogpyeong area was $2.03{\times}10^{-4}{\mu}Ci$ which is still lower than $0.2{\mu}Ci$, the maximum permissible burden in total body recommended by the ICRP.

  • PDF

Atom Number Densities for Uranyl Nitrate Solution (질산우라늄용액의 구성원소별 원자수밀도)

  • Seung Gy Ro;Duck Kee Min;Jung-Kyoon Chon
    • Nuclear Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.103-109
    • /
    • 1982
  • An empirical formula for determining water content as functions of uranium concentration and nitric acid normalities in uranyl nitrate solutions has been derived from a least-squares analysis of experimental data, i.e., uranium concentration, nitric acid normalities and solution densities for a large number of UO$_2$(NO$_3$)$_2$ solutions. The formula derived is Q=1-0.3628C-0.0327H$^{+}$ where Q, C, and H$^{+}$ stand for water content (g/cc), uranium concentration (g/cc), ana nitric acid normality, respectively. Atom number densities and nuclear criticality for hypothetical uranyl nitrate solutions have been calculated by using the empirical formula, ana compared with the results obtained on the basis of uranium concentration, nitric acid normality, and solution density. The empirical formula derived in this study seems to be useful in uranium concentrations ranging from 0.295g/cc down to 0.004g/cc and nitric acid normality from 5.06 to 1.00..00.

  • PDF