DOI QR코드

DOI QR Code

Uranium and Radon Concentrations in Groundwater of the Daejeon Granite Area: Comparison with Other Granite Areas

대전 화강암지역 지하수의 우라늄과 라돈 함량: 다른 화강암지역과의 비교

  • Yun, Uk (Groundwater and Ecohydrology Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Moon Su (Soil and Groundwater Research Division, National Institute of Environmental Research) ;
  • Jeong, Do Hwan (Soil and Groundwater Research Division, National Institute of Environmental Research) ;
  • Hwang, Jae Hong (Geoscience Data Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Byong Wook (Groundwater and Ecohydrology Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 윤욱 (한국지질자원연구원 지하수연구센터) ;
  • 김문수 (국립환경과학원 토양지하수연구과) ;
  • 정도환 (국립환경과학원 토양지하수연구과) ;
  • 황재홍 (한국지질자원연구원 지질자원데이터센터) ;
  • 조병욱 (한국지질자원연구원 지하수연구센터)
  • Received : 2018.11.05
  • Accepted : 2018.12.13
  • Published : 2018.12.31

Abstract

Uranium and radon concentrations in groundwater from 80 wells from Daejeon area were measured to determine the range of concentrations according to the geology. The median uranium content of groundwater was $11.14{\mu}g/L$ for the two-mica granite, $0.90{\mu}g/L$ for the biotite granite, and $0.47{\mu}g/L$ for the Ogcheon group. The median radon content of groundwates was 114.3 Bq/L for the two-mica granite, 61.6 Bq/L for the biotite granite, and 42.2 Bq/L for the Ogchon group, respectively. The uranium content of two-mica granite is 3.78 mg/ kg, which is slightly higher than that of biotite granite 3.20 mg/kg. However, the uranium content in groundwatewr of two-mica granite groundwater is much higher than that of biotite granite. This can be explained by the fact that the two-mica granite is vulnerable to weathering than biotite granite, so uranium in mineral is easily leached into groundwater. The exceeding rate of samples having uranium content above $30{\mu}g/L$ in granite area was 23.8%, which is higher than that of 6.7% in Jurassic granite in Korea. On the other hand, the exceeding rate of samples having radon content above 148 Bq/L in granite rate area was 31.0% which is similar to that of Jurassic granite area of 31.7%.

대전지역의 지질별 지하수의 우라늄, 라돈함량을 파악하기 위하여 80개의 지하수를 채취하였다. 지질별 지하수의 우라늄 함량 중앙값은 복운모화강암지역은 $11.14{\mu}g/L$, 흑운모화강암지역은 $0.90{\mu}g/L$, 옥천 층군은 $0.47{\mu}g/L$으로 복운모화강암지역에서 월등히 높았다. 지질별 지하수의 라돈 함량 중앙값은 복운모화강암지역은 114.3 Bq/L, 흑운모 화강암지역은 61.6 Bq/L, 옥천층군은 42.2 Bq/L로 나타나 지질별 지하수의 우라늄 함량 차이만큼 현지하지는 않았다. 연구지역 복운모화강암의 우라늄 평균함량은 3.78 mg/kg으로 흑운모화강암의 3.20 mg/kg보다 약간 높지만 지하수의 우라늄 함량은 월등히 높다. 이는 복운모화강암은 흑운모화강암에 비하여 풍화에 약하여 광물내 우라늄이 지하수로 쉽게 용출되는 것으로 설명될 수 있으나 추가 연구가 필요하다. 지하수의 우라늄 함량에 비해서 복운모화강암과 흑운모화강암지역 지하수의 라돈 함량에 큰 차이가 없는 것은 복운모화강암지역은 풍화에 약하기 때문에 지하수내 라돈이 대기로 쉽게 빠져나가기 때문으로 판단된다. 연구지역 복운모화강암지역 지하수의 우라늄 함량이 $30{\mu}g/L$를 초과하는 비율은 23.8%로 국내 쥬라기화강암의 초과율인 6.7%보다도 높으나 라돈함량이 148 Bq/L를 초과하는 비율은 31.0%로 국내 쥬라기화강암지역의 초과율인 31.7%와 비슷하다.

Keywords

JJGHBG_2018_v28n4_631_f0001.png 이미지

Fig. 1. Location and lithology map of the study area with sampling points.

JJGHBG_2018_v28n4_631_f0002.png 이미지

Fig. 2. Distribution diagram of uranium concentration occurrence in the groundwaters of the study area.

JJGHBG_2018_v28n4_631_f0003.png 이미지

Fig. 3. Spatial distribution of uranium concentrations in groundwater on a simplified geological map of the study area.

JJGHBG_2018_v28n4_631_f0004.png 이미지

Fig. 4. Distrubution diagram of radon concentration occurrence in th groundwaters of the study area.

JJGHBG_2018_v28n4_631_f0005.png 이미지

Fig. 5. Spatial distribution of groundwater radon levels on a simplified geological map of the study area.

JJGHBG_2018_v28n4_631_f0006.png 이미지

Fig. 6. Relationship between U and Rn concentrations in groundwater of the study area.

JJGHBG_2018_v28n4_631_f0007.png 이미지

Fig. 7. Distribution diagram of uranium (e(U)) concentration occurrence in the granite of the study area.

Table 1.Geological sequences of the study area

JJGHBG_2018_v28n4_631_t0001.png 이미지

Table 2. Physicochemical properties of 80 groundwater samples in the study area

JJGHBG_2018_v28n4_631_t0002.png 이미지

Table 3. Statistical analysis of the uranium concentrations in the groundwater of each geology

JJGHBG_2018_v28n4_631_t0003.png 이미지

Table 4. Statistical analysis of the radon concentrations in the groundwater of each geology.

JJGHBG_2018_v28n4_631_t0004.png 이미지

Table 5. Statistical analysis of the e(U) concentrations in the rock of each geology.

JJGHBG_2018_v28n4_631_t0005.png 이미지

References

  1. Atkins, M. L., Santos, I. R., Perkins, A. and Mather, D. T., 2016, Dissolved radon and uranium in groundwater in a potential coal seam gas development region (Richmond River Catchment, Australia), Journal of Environmental Radioactivity. 154, 83-92. https://doi.org/10.1016/j.jenvrad.2016.01.014
  2. Barcelona, M. J., Gibb, J. P., Helfrich, J. A., Garske, E. E., 1985, Practical guide for groundwater sampling, SWS Contract Report, 374p.
  3. Cho, B. W., Choo, C. O., Kim, M. S., Lee, Y. J., Yun, U., Lee, B. D., 2011, Uranium and radon concentrations in groundwater near the Icheon granite, Journal of Engineering Geology, 21(3), 259-269 (in Korean with English abstract). https://doi.org/10.9720/kseg.2011.21.3.259
  4. Cho, B. W., Kim, M. S., Kim, T. S., Han, J. S., Yun, U., Lee, B. D., Hwang, J. H., Choo, C. O., 2012, Hydrochemistry and distribution of uranium and radon in groundwater of the Nonsan area, Journal of Engineering Geology, 22(4), 427-437 (in Korean with English abstract). https://doi.org/10.9720/kseg.2012.4.427
  5. Cho, B. W.. 2017, Uranium concentrations in groundwater of the Goesan area, Korea, Journal of Engineering Geology, 21(3), 259-269 (in Korean with English abstract). https://doi.org/10.9720/kseg.2011.21.3.259
  6. Choo, C. O., 2002, Characteristics of uraniferous minerals in Daebo granite and significance of mineral species, Journal of Mineral Society of Korea, 15(1), 11-21.
  7. Cothern, C. R. and Rebers, P. A., 1990, Radon, radium and uranium in drinking water, Lewis publishers, Inc., 283p.
  8. Dillon, M. E., Carter, G. L., Arra, R., Kahn, B., 1997, Radon concentrations in groundwater of Georgia piedmont, Health Physics, 60(2), 229-236. https://doi.org/10.1097/00004032-199102000-00011
  9. Han, J. H. and Park, K. H., 1996, Abundances of uranium and radon in groundwater of Taejeon area, Economic and Environmental Geology, 29(5), 589-595 (in Korean with English abstract).
  10. Hollocher, K. and Yuskaitis, A., 1993, Chemical composition of surface and high-uranium well water, Lake Sunapee area, New Hampshire: Northeastern Geology, 15(2), 159-169.
  11. Hwang, J., 2013, Occurrence of U-minerals and sources of U in groundwater in Daebo granite, Daejeon area, Journal of Engineering Geology, 23(4), 399-407 (in Korean with English abstract). https://doi.org/10.9720/kseg.2013.4.399
  12. Kurttio, P., Auvinen, A., Salonen, L., Saha, H., Pekkanen, J., Makelainen, S., Vaisanen, S., Pentila, I. and Komulainen, H., 2002, Renal effects of uranium in drinking water, Journal of Environmental Health Perspectives, 110(4), 337-342.
  13. Lee, S. M., Km, H. S., Na, K. C., 1980, Geological map of Daejeon sheet, KIGAM.
  14. Milvy, P. and Cothern, R., 1990, Scientific background for the development of regulations for radionuclides in drinking water, Lewis Publishers, Chelsea, Michigan, USA
  15. Morland, G., Reimann, C., Strand, T., Skarphagen, H., Banks, D., Bjorvatn, K., Hall, E. M., Siewers, U., 1997, The hydrogeochemistry of Norwegian bedrock groundwater-selected parameters (pH, F, Rn, U, Th, Na, Ca) in samples from Vestfold and Hordaland, Norway, NGU Bull, 432, 103-117.
  16. NIER (National Institute of Environmental Research), 1999, Study on the radionuclide concentrations in groundwater, KIGAM, 338p (in Korean with English abstract).
  17. NIER, 2002, Study on the radionuclide concentrations in the groundwater (IV), KIGAM, 357p (in Korean with English abstract).
  18. NIER, 2008, Studies on the naturally occurring radionuclides in groundwater of Korea (I) KIGAM, 293p (in Korean with English abstract).
  19. NIER, 2011, Studies on the naturally occurring radionuclides in groundwater of the two high potential areas (11) KIGAM, 253p (in Korean with English abstract).
  20. NIER, 2012, Study on the naturally occurring radionuclides in groundwater of Korea (12), KIGAM, 245p (in Korean with English abstract).
  21. NIER, 2013, Studies on the naturally occurring radionuclides in groundwater of the Youngin high potential area, KIGAM, NIER-SP2013-416, 220p (in Korean with English abstract).
  22. NIER. 2016, Studies on the naturally occurring radionuclides in groundwater, NIER-RP2016-324, 213p (in Korean with English abstract).
  23. NRC (National Research Council), 1999, Risk assessment of radon in drinking water, National Academies press, Washington.
  24. Park, H. I., Lee, J. D. and Cheong, J. G., 1977, Geological map of Yuseong sheet, KIGAM.
  25. Przylibski, T. A., and Gorecka, J., 2014, $^{222}Rn$ activity concentration differences in groundwaters of three Variscan granitoid massifs in the Sudetes (NE Bohemian Massif, SW Poland, Journal of Environmental Radioactivity, 134, 43-53. https://doi.org/10.1016/j.jenvrad.2014.02.021
  26. Riedel, T. and Kubeck, C., 2018, Uranium in groundwater-A synopsis based on a large hydrogeochemical data set, Water Research, 129, 29-38. https://doi.org/10.1016/j.watres.2017.11.001
  27. Siegel, M. D. and Bryan, C. R., 2003, Environmental geochemistry of radioactive contamination, Treatise on Geochemistry, 9, 205-262.
  28. Thivya, C., Chidambaram, S., Keesari, T., Prasanna, M. V., Thilagavathi, R., Adithya V. S. and Singaraja, C., 2016, Lithological and hydrochemical controls on distribution and speciation of uranium in groundwaters of hard-rock granitic aquifers of Madurai district, Tamil Nadu (India), Environmental Geochemical Health, 38, 497-509. https://doi.org/10.1007/s10653-015-9735-7
  29. USEPA (United States Environmental Protection Agency), 2009, National Primary Drinking Water Regulations.
  30. WHO (World Health Organization), 2011, Guidelines for drinking water quality. Chapter 9, Radiological aspects, 4th edition, World Health Organization, Geneva.