• Title/Summary/Keyword: 용해공극

Search Result 57, Processing Time 0.027 seconds

PEI Hollow Fiber Membranes Modified with Fluorinated Silica Nanoparticles for the Recovery of Biogas from Anaerobic Effluents (불화 실리카로 개질된 폴리에테르이미드 중공사막을 이용한 혐기성 유출수로부터 바이오가스 회수)

  • Yun, Kang Hee;Wongchitphimon, Sunee;Bae, Tae-hyun
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.326-332
    • /
    • 2020
  • In this study, polymer-fluorinated silica composite hollow fiber membranes were fabricated and applied to a membrane contactor for the recovery of methane dissolved in the anaerobic effluent. To prepare the composite membranes, porous hollow fiber substrates were fabricated with Ultem®, a commercial polyetherimide (PEI). Subsequently, fluorinated silica particles were synthesized and coated on the surface via strong covalent bonding. Due to the high porosity, our membrane showed a CH4 flux of 8.25 × 10-5 ㎤ (STP)/㎠·s at the liquid velocity of 0.03 m/s which is much higher that that of commercial polypropylene membrane designed for degassing processes. This is attributed to our membrane's high porosity as well as a superior surface hydrophobicity (120~122°) resulted from the coating with fluorinated silica nanoparticles.

Preparation of Porous Polypropylene Membrane by a Thermally Induced Phase Separation Method in Supercritical CO2 (CO2 초임계 유체에서 열식법을 이용한 다공성 폴리프로필렌 막의 제조)

  • Lee, Sang-Joon;Chung, Jaygwan G.
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.16-20
    • /
    • 2005
  • Porous polypropylene membranes were prepared by a thermally induced phase separation method in super-critical $CO_2$, where polypropylene and Camphene were used as raw materials. The porosity of polypropylene membranes with 10 wt% polypropylene concentration was 78, 80, 73% by using methanol, ethanol, and n-buthanol as an analytical solvent, respectively. The tensile strength increased with an increasing polypropylene concentration, where it was $0.17kg_f/mm^2$ at 10 wt% polypropylene concentration. The extraction rate for Camphene increased with time and Camphene was removed 94% in 5 min. It increased with an increasing temperature and was 99% at $45^{\circ}C$, however, decreased with an increasing temperature at higher than $45^{\circ}C$. The extraction rate increased with an increasing pressue up to 150 bar, however, decreased slightly with an increasing pressure over 150 bar. The extraction rate had a relation with the solubility of Camphene in supercritical $CO_2$.

Evaluation of Strength and Durability of Mortar using Ferronickel Slag Powder and Admixtures (페로니켈슬래그 미분말 및 혼화재의 복합사용에 따른 모르타르의 강도 및 내구성 평가)

  • Jo, Seol-Ah;Yoo, Jeong-Hwan;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.262-270
    • /
    • 2019
  • Ferronickel slag, which is an industrial byproduct, is activated by mechanochemical reaction as a nonferrous metal and can be used as an admixture. Therefore, ferronickel slag is used as a substitute resource of admixture. In this study, to evaluate the effect of mixed of ferronickel slag powder and admixture, a mortar using a mixture of ferronickel slag powder, quicklime, gypsum and calcium chloride was fabricated by vibrated and rolled manufacturing method. Strength were evaluated by flexural and compressive strength tests, and durability was evaluated by performing chlorine ion penetration resistance and chemical resistance test. When the substitution ratio of ferronickel slag powder is constant, it is considered that the mixed use of quicklime, gypsum and calcium chloride as admixtures increases the performance.

Mass Physical Properties in Deep-Sen Sediment from the Clarion-Clipperton Fracture Zone, Northeast Equatorial Pacific (북동태평양 클라리온-클리퍼톤 균열대 심해저 퇴적물의 물리적 특성에 관한 연구)

  • Chi, Sang-Bum;Lee, Hyun-Bok;Kim, Jong-Uk;Hyeong, Ki-Seong;Ko, Young-Tak;Lee, Kyeong-Yang
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.739-752
    • /
    • 2006
  • Deep-sea surface sediments acquired by multiple corer from 69 stations in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific, were examined to understand the correlation of mass physical properties and sedimen-tological processes. The seabed of the middle part ($8-12^{\circ}N$) of the study area is mainly covered by biogenic siliceous sediment compared with pelagic red clays in the northern part ($16-17^{\circ}N$). In the southern part ($5-6^{\circ}N$), water depth is shallower than carbonate compensation depth (CCD). The mass physical properties such as grain size distribution, mean grain size, water content, specific grain density, wet bulk density, void ratio, and porosity of sediments are distinctly different among the three parts of the study area. Surface sediments in northern part are characterized by fine grain size and low water contents possibly due to low primary productivity and high detrital input. Conversely, sediments in the middle part are characterized by coarse grain size and high water contents, which might be caused by high surface productivity and deeper depth than CCD. The sediments show low water contents and high density in the southern part, which can be explained by shallower depth than CCD. Our results suggest that the variations in mass physical properties of sediments are influenced by combined effects including biogenic primary productivity of surface water, water depth, especially with respect to CCD, sedimentation rate, detrital input, and the geochemistry of the bottom water (for example, formation of authigenic clay minerals and dissolution of biogenic grains).

Geochemical Reactive Experimental and Modeling Studies on Caprock in the Pohang Basin (포항분지 덮개암에 대한 지화학적 반응 실험 및 모델링 연구)

  • Kim, Seon-ok;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.371-380
    • /
    • 2016
  • This study aims to identify the mineraloical and petrographical characteristics of caprock from drilling cores of Pohang basin as a potential $CO_2$ storage site. Experiments and modeling were conducted in order to investigate the geochemical and mineralogical caprock effects of carbon dioxide. A series of autoclave experiments were conducted to simulate the interaction in the $scCO_2$-caprock-brine using a high pressure and temperature cell at $50^{\circ}C$ and 100 bar. Geochemical and mineralogical alterations after 15 days of $scCO_2$-caprock-brine sample reactions were quantitatively examined by XRD, XRF, ICP-OES investigation. Results of mineralogical studies, together with petrographic data of caprock and data on the physicochemical parameters of brine were used for geochemical modeling. Modelling was carried out using the The Geochemist's Workbench 11.0.4 geochemical simulator. Results from XRD analysis for caprock sample showed that major compositional minerals are quartz, plagioclase, and K-feldspar, and muscovite, pyrite, siderite, calcite, kaolinite and montnorillonite were included on a small scale. Results from ICP-OES analysis for brine showed that concentration of $Ca^{2+}$, $Na^+$, $K^+$ and $Mg^{2+}$ increased due to dissolution of plagioclase, K-feldspar and muscovite. Results of modeling for the period of 100 years showed that the recrystallization of kaolinite, dawsonite and beidellite, at the expense of plagioclase and K-feldspar is characteristic. Volumes of newly precipitation minerals and minerals passing into brine were balanced, so the porosity remained nearly unchanged. Experimental and modeling results indicate the interaction between caprock and $scCO_2$ during geologic carbon sequestration can exert significant impacts in brine pH and solubility/stability of minerals.

Study for the Geochemical Reaction of Feldspar with Supercritical $CO_2$ in the Brine Aquifer for $CO_2$ Sequestration (이산화탄소의 지중저장 대염수층에서 과임계이산화탄소에 의한 장석의 지화학적 변화 규명)

  • Choi, Won-Woo;Kang, Hyun-Min;Kim, Jae-Jung;Lee, Ji-Young;Lee, Min-Hee
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.403-412
    • /
    • 2009
  • The objective of this study is to investigate the geochemical change of feldspar minerals by supercritical $CO_2$, which exists at $CO_2$ sequestration sites. High pressurized cell system (100 bar and $50^{\circ}C$) was designed to create supercritical $CO_2$ in the cell and the surface change and the dissolution of plagioclase and orthoclase were observed when the mineral surface reacted with supercritical $CO_2$ and water (or without water) for 30 days. The polished slab surface of feldspar was contacted with supercritical $CO_2$ and an artificial brine water (pH 8) in the experiments. The experiments for the reaction of feldspar with only supercritical $CO_2$ (without brine water) were also conducted. Results from the first experiment showed that the average roughness value of the plagioclase surface was 0.118 nm before the reaction, but it considerably increased to 2.493 nm after 30 days. For the orthoclase, the average roughness increased from 0.246 nm to 1.916 nm, suggesting that the dissolution of feldspar occurs in active when the feldspars contact with supercritical $CO_2$ and brine water at $CO_2$ sequestration site. The dissolution of $Ca^{2+}$ and $Na^+$ from the plagioclase occurred and a certain part of them precipitated inside of the high pressurized cell as the form of amorphous silicate mineral. For the orthoclase, $Al^{3+}$, $K^+$, and $Si^{+4}$ were dissolved in order and the kaolinite was precipitated. In the experiments without water, the change of the average roughness value and the dissolution of feldspar scarcely occurred, suggesting that the geochemical reaction of feldspars contacted with supercritical $CO_2$ at the environment without the brine water is not active.

Physicochemical Properties of Onion Powder as Influenced by Drying Methods (건조방법에 따른 양파분말의 품질특성)

  • Kim, Hye-Ran;Seog, Eun-Ju;Lee, Jun-Ho;Rhim, Jong-Whan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.3
    • /
    • pp.342-347
    • /
    • 2007
  • Physicochemical properties of onion powder as influenced by drying methods were investigated. Moisture contents of onion powder were 13.29%, 12.99%, and 10.78% for samples dried using hot-air dryer, freeze dryer, and vacuum dryer, respectively. There were no significant differences in crude fat, crude protein, and crude ash content (p>0.05) depending on the drying methods. Samples prepared by freeze drying showed a significantly higher L-value as compared with those prepared by hot-air and vacuum drying (p<0.05). Scanning electron micrographs showed that freeze drying produced smaller particle-sized sample which in turn resulted in the higher porosity of the sample. Freeze dried samples revealed significantly lower degree of rehydration than other samples (p<0.05) probably due to small particle size of the sample. Water solubility of freeze dried sample appeared to be higher than that of other drying methods while the swelling ratio of the same sample appeared to be lower than that of the others. Browning index was significantly lower in samples prepared by freeze drying (p<0.05) but not significantly different between samples dried by hot-air and vacuum drying. Vitamin C content was higher in freeze dried onion powder due to the lower temperature applied to the sample. Freeze dried onion powder contained significantly lower amount of total polyphenol and higher amount of total sugar as compared to other samples (p<0.05).

Polyacrylonitrile based Copolymer Synthesis and Precursor Fiber Spinning for Manufacturing High-performance Carbon Fiber (고성능 탄소섬유 제조를 위한 폴리아크릴로니트릴 기반 공중합 고분자 합성 및 전구체 섬유 방사)

  • Ju, Hyejin;Han, Minjung;Song, Kyunghyun;Jeon, Changbeom;Jeong, Hwakyung;Kim, Min Jeong;Chae, Han Gi
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.115-119
    • /
    • 2022
  • The performance of carbon fiber is important for the production of these high-quality polymer composite materials such as CFRP (Carbon Fiber Reinforced Plastic). For this purpose, it is essential to use an optimized spinning process for improving the mechanical, physical, and structural properties of the precursor fiber, which greatly affects the properties of the carbon fiber, and the use of a suitable precursor polymer. In this study, the content of MAA (Methacrylic Acid), MAA injection time, and concentration of AIBN (2,2'-Azobis(2-methylpropionitrile)) were set as parameters for the polymer synthesis process, and Poly(AN-co-MAA) (poly(acrylonitrile-co-methacrylic acid)) was polymerized by solution polymerization. Poly(AN-co-MAA) with a molecular weight of 305,138 g/mol and an MAA ratio of 4.2% was dissolved in DMF (N,N-dimethylformamide) at a concentration of 16.0 wt%, and then a precursor fiber was prepared through dry-jet-wet spinning. The precursor fiber had a tensile strength of ~1.06 GPa and a tensile modulus of ~22.01 GPa, and no voids and structural defects were observed on the fiber.

Development of Root Media Containing Pine Bark for Cultivation of Horticultural Crops (소나무 수피를 포함한 원예작물 재배용 혼합상토의 개발)

  • Park, Eun Young;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.499-506
    • /
    • 2014
  • This research was conducted to develop root media containing ground and aged pine bark (GAPB) and ground and raw pine bark (GRPB). After analysis of physico chemical properties, the pine barks were blended with peat moss (PM) or coir dust (CD) in various ratios to formulate 12 root media. Then, two out of 12 root media were chosen based on the physical properties for further experiments. The pre-planting nutrient charge fertilizers (PNCF) were incorporated into two root media and chemical properties were analysed again. The total porosity (TP), container capacity (CC), and air-filled porosity (AFP) of GAPB were 78.7%. 39.4%, and 38.3%, respectively, while those of GRPB were 74.7%, 41.2%, and 33.4%, respectively. The percentage of easily available water (EAW, from CC to 4.90 kPa tension) and buffering water (BW, 4.91-9.81 kPa tension) in GAPB were 12.7% and 8.5%, respectively, which were a little lower than the 13.5% and 8.8% in GRPB. The pH and EC were not different significantly, but cation exchange capacity was different between the two pine barks (GAPB: pH 5.26, EC $0.61dS{\cdot}m^{-1}$, CEC $15.7meq{\cdot}100g^{-1}$; GRPB: pH 5.19, EC $0.32dS{\cdot}m^{-1}$, CEC $9.32meq{\cdot}100g^{-1}$). The concentrations of exchangeable cations in GAPB were Ca 0.32, K 0.05, Mg 0.27 and $0.12cmol+{\cdot}kg^{-1}$, whereas those in GRPB were Ca 0.28, K 0.08, Mg 0.25 and $0.09cmol+{\cdot}kg^{-1}$. The concentrations of $PO_4$-P, $NH_4$-N and $NO_3$-N were 485.8, 0.62 and $0.91mg{\cdot}L^{-1}$ in GAPB and 578, 1.00 and $0.82mg{\cdot}L^{-1}$ in GRPB, respectively, when those were analyzed in the solution of the saturated paste. The TP, CC and AFP in the two selected media were 89.3 and 76.3, and 13.0% in PM+GAPB (8:2, v/v) and 88.2, 68.2 and 20.0% in CD+GRPB (8:2), respectively. The pHs and ECs were 3.8 and $0.24dS{\cdot}m^{-1}$ in PM+GAPB which were a little lower than 5.8 and $0.65dS{\cdot}m^{-1}$ in CD+GRPB. However, the pHs analysed before and after incorporation of PNCF in the two root media did not show large differences. This is because the solubility of dolomitic lime is very low, and the pH it is expected to rise gradually when crops are cultivated int he root media. The information obtained in this study should facilitate effective formulation of root media containing pine bark.

A Study on Geotechnical Properties of Deep-Sea Sediments, NE Equatorial Paciflc of KODOS Area (북동태평양 KODOS 지역 심해저 퇴적물의 지질공학적 특성)

  • Kim, Ki-Hyun;Moon, Jai-Woon;Lee, Kyeong-Yong;Son, Seung-Kyu;Oh, Jae-Kyung;Chi, Sang-Bum
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.320-334
    • /
    • 2000
  • Deep-sea surface sediment were analyzed for their geotechnical properties, and the sediment samples were collected with a multiple-corer from 31 stations along the track line (131$^{\circ}$30'W, 5-12$^{\circ}$N) in the northeast equatorial Paciflc. Most of the sediments from the northern part (8-12$^{\circ}$N) showed typical properties of siliceous sediments, whereas the southern part (5-6$^{\circ}$N) showed calcareous characteristics due to high biogenic carbonate productivity in the surface waters, where its water depth was shallower than the carbonate compensation depth (CCD: 4,400 m). Geotechnical properties changed sharply at the boundary of 7$^{\circ}$N. Calcareous sediments from the southern part had low water contents, low porosity, low shear strength, high bulk density and high specific grain density, whereas siliceous sediments from the northern part attained high water content, high porosity, high shear strength, low bulk density and low specific grain density. Higher sediment activities were observed in the northern sediment samples than the southern sediment samples. The core samples of the northern sediments were divided into a semi-liquid upper layer and a consolidated lower layer with a boundary at 5-8 cm. These sediment samples showed a rapid increasing pattern along the downcore in original shear strength when an opposite trend was observed in the southern samples. The results showed that sediment variabilities in geotechnical properties between the northern and southern parts such as productivities of surface water, grain solubility due to water depth variation, sedimentation rate, erosion and redistribution of sediment, and combined sedimentary processes were distinctly different along the latitude.

  • PDF