Preparation of Porous Polypropylene Membrane by a Thermally Induced Phase Separation Method in Supercritical CO2

CO2 초임계 유체에서 열식법을 이용한 다공성 폴리프로필렌 막의 제조

  • Lee, Sang-Joon (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Chung, Jaygwan G. (Department of Chemical Engineering, Sungkyunkwan University)
  • 이상준 (성균관대학교 화학공학과) ;
  • 정재관 (성균관대학교 화학공학과)
  • Received : 2004.06.28
  • Accepted : 2004.11.01
  • Published : 2005.02.28

Abstract

Porous polypropylene membranes were prepared by a thermally induced phase separation method in super-critical $CO_2$, where polypropylene and Camphene were used as raw materials. The porosity of polypropylene membranes with 10 wt% polypropylene concentration was 78, 80, 73% by using methanol, ethanol, and n-buthanol as an analytical solvent, respectively. The tensile strength increased with an increasing polypropylene concentration, where it was $0.17kg_f/mm^2$ at 10 wt% polypropylene concentration. The extraction rate for Camphene increased with time and Camphene was removed 94% in 5 min. It increased with an increasing temperature and was 99% at $45^{\circ}C$, however, decreased with an increasing temperature at higher than $45^{\circ}C$. The extraction rate increased with an increasing pressue up to 150 bar, however, decreased slightly with an increasing pressure over 150 bar. The extraction rate had a relation with the solubility of Camphene in supercritical $CO_2$.

$CO_2$ 초임계 유체에서 열식법을 이용하여 폴리프로필렌과 켐펜을 혼합하여 다공성 폴리프로필렌 막을 제조했다. 폴리프로필렌 농도 10 wt%의 조건에서 제조된 폴리프로필렌 막의 공극률은 메탄올, 에탄올, n-부탄올에 따라 각각 78, 80, 73%였다. 폴리프로필렌의 농도가 증가할수록 인장강도는 높아졌으며 폴리프로필렌 농도가 10 wt% 일 때 인장강도는 $0.17kg_f/mm^2$였다. $CO_2$ 초임계 유체를 사용하여 켐펜을 추출한 결과 시간에 따라 추출속도가 증가하였으며 5분 경과 후 94% 제거되었다. 온도가 증가함에 따라 추출속도가 증가했으며 $45^{\circ}C$ 조건에서 99% 제거되었다. 그러나 그 이상의 높은 온도에서는 추출속도는 저하되었다. 150 bar의 압력까지는 압력이 증가함에 따라 켐펜의 추출속도는 증가하였으나, 그 이상의 압력 조건에서는 압력이 증가함에 따라 추출속도는 미소하게 감소했다. 추출속도는 $CO_2$ 초임계 유체의 켐펜에 대한 용해도 특성과 상관성이 있었다.

Keywords

References

  1. Kang, M. H., Chai, H. N. and Yang, W. K., 'Relationship on Ionic Conductivity and Ionic Permeability through Polymer Membrane,' Appl. Chem., 6(1), 328-331(2002)
  2. Park, H. B. and Lee, Y. M., 'Polymer Electrolyte Membranes for Fuel Cell,' J. Korean Ind. Eng. Chem., 13(1), 1-11(2002)
  3. Lee, S. G., Lee, J. H., Choi, K. Y. and Rhee, J. M., 'Phase Inversion Behavior of Polypropylene/Polystyrene Blends', Polymer(Korea), 22(2), 258-268(1998)
  4. Bae, B., Chun, B. H., Ha, H. Y., Oh, I. H. and Kim, D., 'Preparation and Characterization of Plasma Treated PP Composite Electrolyte Membranes,' J. Membr. Sci., 202(1-2), 245-252(2002) https://doi.org/10.1016/S0376-7388(01)00624-X
  5. Yang, M. C. and Perng, J. S., 'Microporous Polypropylene Tubular Membranes via Thermally Induced Phase Separation using a Novel Solvent-Camphene,' J. Membr. Sci., 187(1-2), 13-22(2001) https://doi.org/10.1016/S0376-7388(01)00425-2
  6. Matsuyama, H., Yuasa, M., Kitamura, Y., Teramoto, M. and Lloyd, D. R., 'Structure Control of Anisotropic and Asymmetric Polypropylene Membrane Prepared by Thermally Induced Phase Separation,' J. Membr. Sci., 179(1-2), 91-100(2000) https://doi.org/10.1016/S0376-7388(00)00514-7
  7. Evren, V., 'A Numerical Approach to the Determination of Mass Transfer Performances through Partially Wetted Microporous Membranes: Transfer of Oxygen to Water,' J. Membr. Sci., 175(1), 97-110(2000) https://doi.org/10.1016/S0376-7388(00)00401-4
  8. Kim, H. J., Kang. Y. S. and Kim, J. J., 'Polymeric Microporous Membranes,' Polym. Sci. Technol., 2(2), 81-87(1991)
  9. Atkinson, P. M. and Lloyd, D. R., 'Anisotropic Flat Sheet Membrane Formation via TIPS: Atmospheric Convection and Polymer Molecular Weight Effects,' J. Membr. Sci., 175(2), 225-238(2000) https://doi.org/10.1016/S0376-7388(00)00422-1
  10. Kim, J. R. and Kyong, J. B., 'Solubilities of Solids in Supercritical Fluids,' J. Korean. Chem. Soc., 34(4), 325-330(1990)
  11. Lee, J. S., Jeon, B. J., Jung. I. H. and Hong, I. K., 'Determination of Diffusion Coefficients of Extracts in Supercritical Carbon Dioxide,' J. Korean Ind. Eng. Chem., 6(2), 320-330(1995)
  12. Matsuyama, H., Yano, H., Maki, T., Teramoto, M., Mishima, K. and Matsuyama, K., 'Formation of Porous Flat Membrane by Phase Separation with Supercritical $CO_2$,' J. Membr. Sci., 194(2), 157-163(2001) https://doi.org/10.1016/S0376-7388(01)00436-7
  13. Matsuyama, H., Yamamoto, A., Yano, H., Maki, T., Teramoto, M., Mishima, K. and Matsuyama, K., 'Effect of Organic Solvents on Membrane Formation by Phase Separation with Supercritical $CO_2$,' J. Membr. Sci., 204(1-2), 81-87(2002) https://doi.org/10.1016/S0376-7388(02)00182-5
  14. Lee, S. B., Kim, H. J., Jung, I. H. and Hong, I. K., 'Preparation of High Performance Membrane using Supercritical Carbon Dioxide and Gas Permeability of the Membrane,' Theories and Applications of Chem. Eng., 1(1), 912-915(1995)
  15. Matsuyama, H., Maki, T., Teramoto, M. and Asano, K., 'Effect of Polypropylene Molecular Weight on Porous Membrane Formation by Thermally Induced Phase Separation,' J. Membr. Sci., 204(1-2), 323-328(2002) https://doi.org/10.1016/S0376-7388(02)00182-5
  16. Lee, S. J., Kim, M. S. and Chung, J. G., 'Characteristics of Microporous Polycarbonate Membrane Prepared by a Phase Inversion Method with Supercritical $CO_2$,' J. Korean Ind. Eng. Chem., 14(8), 1058-1063(2003)
  17. Shi, Q., Yu, M., Zhou, X., Yan, Y. and Wan, C., 'Structure and Performance of Porous Polymer Electrolytes Based on P(VDF-HFP) for Lithium Ion Batteries,' J. Power Sources, 103(2), 286-292(2002) https://doi.org/10.1016/S0378-7753(01)00868-0
  18. Kim, J. R., Kim, H. K. and Kyong, J. B., 'Solubilities of Naphthalene in Supercritical Fluids,' J. Korean. Chem. Soc., 32(4), 311-317(1988)
  19. Sun, Y. P., Supercritical Fluid Technology in Materials Science and Engineering, Marcel Dekker, Inc., New York, NY(2002)