• Title/Summary/Keyword: 용탕단조

Search Result 64, Processing Time 0.021 seconds

Microstructure and Strengthening Behavior in Squeeze Cast Mg-Zn by Addition of Zr (용탕단조 Mg-Zn-Zr 합금의 미세조직 및 강화기구)

  • Oh, Sang-Sub;Hwang, Young-Ha;Kim, Do-Hyang;Hong, Chun-Pyo;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.38-46
    • /
    • 1999
  • Microstructural characteristics and strengthening behavior in Mg-5wt%Zn-0.6wtZr alloys have been investigated by a combination of optical, secondary electron and transmission electron microscopy, differential thermal analysis, and hardness and tensile, creep property measurements. The result have been compared with those of Mg-5wt%Zn alloys. The as-squeeze cast microstructure consisted of dendrite ${\alpha}-Mg$, interdendrite or intergranular $Mg_7Zn_3$ and fine dispersoids of $ZnZr_2$. The size of secondary solidification phases in Mg-5wt%Zn-0.6wtZr alloys was significantly smaller than that of the Mg-5wt%Zn alloys due to the existence of fine dispersoid of $ZnZr_2$ which also effected the refinement of grain size. TEM study showed that the main cause of age hardening is formation of fine rodlike ${\beta}_1\;'$ precipitates as well as fine $ZnZr_2$ dispersoids. Due to the observed microstructural characteristics mechanical propeties of Mg-5wt%Zn-0.6wtZr alloys was found to be superior to those of Mg-5wt%Zn alloys.

  • PDF

Effect of Zinc and Zirconium on Microstructure and Mechanical Property in Squeeze Cast Magnesium Alloy (용탕단조 마그네슘합금의 조직과 기계적 성질에 미치는 Zn과 Zr의 영향)

  • Choi, Young-Doo;Choi, Jung-Chul;Chang, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.403-409
    • /
    • 1999
  • Mg-Zn-Zr ternary alloys containing 6wt% Zn and (0, 0.4, 0.6)wt% Zr, which is added for grain refinement, can be cast into complex shape by squeeze casting. The influence of Zn and Zr as additional elements on microstructure and mechanical characteristics is investigated by OM, SEM, WDX, XRD and microvickers hardness measurement. The microstructure of Mg-Zn-Zr alloys consists of primary ${\alpha}-Mg$ and MgZn eutectic compound between dendrites. The grain size is decreased from $136{\mu}m$ to $97\;{\mu}m$ by Zr addition, resulting in that the hardness is increased from 42Hv to 59Hv. Furthermore, the grain size is changed to $83{\beta}$ and the hardness is increased to 65Hv by additional infiltration pressure. These results indicate that the Zr addition and additional infiltration pressure are effective for grain refinement acting as an important factor to increase the hardness. The increment in hardness by the Zr addition is slightly larger than that by the additional infiltration pressure.

  • PDF

Effect of Applying Pressure of High Pressure Diecasting Process Using Salt core (용탕단조 시 저온염코어 적용 가압력의 영향)

  • Lee, Jun-Ho;Moon, J.H.;Lee, Dock-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.3
    • /
    • pp.136-140
    • /
    • 2008
  • A new concept of salt core, a melting temperature of which is lower than the solidus temperature of cast alloy, was introduced to produced an integrated casting part having a complicated inner shape or requiring under-cut in high pressure die casting or squeeze casting process. The main goal of this study is to develop a new integrated net-shape forming technology using fusible core of lower melting temperature than that of a casting alloy. This integrated net-shape forming technology would be very successful and cost-effective for producing the integrated products having a complicated inner shape or requiring under-cut. The technology for measuring and evaluating a various property of fusible core such as a thermal conductivity and thermal expansion coefficient, melting temperature was established. Also, the work space can be cleaned without a pollution inducing products.

Effects on extrusion ratio and temperature of shore fiber reinforcd metal matrix composites by rheo-compocating (반용융 가공법에 의한 단섬유 보강 급속복합재료의 강도에 미치는 압출비와 압출온도의 영향)

  • 윤한기;김석호;이상필
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.18-27
    • /
    • 1997
  • Al 6061 alloy reinforced with 10 vol.% ${\delta}-Al_2O_3$ short fiber was fabricated by Rheo-compocasting and squwwze cating. Extrusion processings were performed at temperatures from 40$0^{\circ}C$ to 55$0^{\circ}C$ with various extrusion ratio for curved shape dies. In proportion to the increase of extrusion ratios and temperatures, ultimate tensile strength for extruded materials improved. SEM observation of fractured surfsce was capcble oof accounting for fracture mechanism and bounding state of fiber and matrix.

  • PDF

Modeling of Microstructural Evolution in Squeeze Casting of an Al-4.5wt%Cu Alloy (용탕단조시 Al-4.5%Cu합금의 조직예측)

  • Cho, In-Sung;Hong, Chun-Pyo;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.550-555
    • /
    • 1996
  • A stochastic model, based on the coupling of the finite volume(FV) method for macroscopic heat flow calculation and a two-dimensional cellular automaton(CA) model for treating microstructural evolution was applied-for the prediction of microstructural evolution in squeeze casting. The interfacial heat transfer coefficient at the casting/die interface was evaluated as a function of time using an inverse problem method in order to provide a quantitative simulation of solidification sequences under high pressure. The effects of casting process variables on the formation of solidification grain structures and on the columnar to equiaxed transition of an Al-4.5wt%Cu alloy in squeeze casting were investigated. The calculated solidification grain structures were in good agreement with those obtained experimentally.

  • PDF

Characterization of the Ceramic Reinforced AC4C Matrix Composites Processed by Squeeze Casting (용탕단조법으로 제조된 AC4C 합금기 세라믹강화 복합재료의 특성연구)

  • Kim, Eok-Soo
    • Journal of Korea Foundry Society
    • /
    • v.25 no.2
    • /
    • pp.88-94
    • /
    • 2005
  • The microstructure and mechanical property of the ceramic reinforced AC4C matrix composites processed by squeeze casting were investigated. In this study Kaowool and Saffil fiber which are ceramic reinforcements are used as preform materials. As a matrix material, Al-7wt.%Si-0.3wt.%Mg(AC4C) has been used. In case of Kaowool and Saffil/AC4C composites, 7.5 MPa squeezing pressure and minimum 7.0% binder amount are needed to produce sound composite materials. The tensile strength of Kaowool/ AC4C composite is lower than the matrix metal and this can be explained by the melt unfilling due to formed cluster of Kaowool reinforcements. But the mechanical properties of hardness, wear resistance and thermal expansion are better than the matrix materials due to the strengthening effect of ceramic reinforcements.

Characterization of the Ni and Ni-Cr Porous Metal Reinforced AC4C Matrix Composites Fabricated by Squeeze Casting (용탕단조법에 의한 Ni, Ni-Cr 다공질 발포금속 강화 AC4C 합금기 복합재료에 관한 연구)

  • Kim, Eok-Soo
    • Journal of Korea Foundry Society
    • /
    • v.25 no.2
    • /
    • pp.80-87
    • /
    • 2005
  • The microstructure and mechanical property of the Ni and Ni-Cr porous metal reinforced AC4C matrix composites fabricated by squeeze casting were investigated. In this study Ni, Ni-Cr porous metals which are estimated to be easy to fabricate by squeeze casting are used as strengtheners for composite materials. As a matrix material, Al-7wt.%Si-0.3wt.%Mg(AC4C) has been used. In case of Ni/AC4C and Ni-Cr/AC4C composite, $750^{\circ}C$ melt temperature and minimum 25MPa squeezing pressure are needed to produce sound composite materials. The observation of interfacial reaction zone at various heat treatment condition shows that atsolutionizing temperature of above $520^{\circ}C$, the interfacial reaction zone increases proportionally with heat treatment time and the reaction products formed by interfacial reactions are mainly composed by $Al_{3}Ni$ and $Al_{3}Ni_{2}$ phases.

Microstructure and Mechanical Properties of $SiC_p/6061$ Al Composites Fabricated by Indirect Squeeze Casting (간접 용탕단조법에 의하여 제조한 $SiC_p/6061$ Al 복합재료의 조직과 기계적 성질)

  • Seo, Young-Ho;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.18 no.4
    • /
    • pp.373-382
    • /
    • 1998
  • Particulate reinforced aluminum alloys produced by indirect squeeze casting are difficult to shape by cutting or milling. Therefore near net shape forming of complex shapes is of high economic and technical interest. The complex shape products of $SiC_p/6061$ Al composites are fabricated by the melt-stirring and indirect squeeze casting process. The mold temperatures are $200^{\circ}C$ and $300^{\circ}C$ and applied pressures are 70, 100, and 130 MPa. The volume fractions of the reinforcements are in the range of 5 vol% to 15 vol%. The reinforcement dispersion state are observed using on optical microscope. By employing observed results systematically a correlation is demonstrated among the microstructure, particles behavior, mechanical properties and processing parameters for an optimum melt-stirring(compocasting) and indirect squeeze casting process of MMCs. A procedure to establish the optimum squeeze casting of Al-MMCs is proposed.

  • PDF

Fabrication of AC4A/SiCw composite by squeeze casting (III) - Mechanical characteristics - (용탕단조법에 의한 AC4A/SiCw 복합재료 제조에 관한 연구(III) - 기계적 특성 -)

  • Moon, Kyung-Cheol;Lee, Jun-Hee;Yoon, Eui-Pak
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.3
    • /
    • pp.160-168
    • /
    • 1994
  • This was studied about mechanical characteristic of AC4A/SiCw 10-30% reinforced composites. Tensile strength of pressed base metal(base metal) with SiCw preform was higher than without pressed base metal(AC4A). If SiCw whisker volume fraction was increased, tensile strength at room temperature was increased. And tensile strength of SiCw 30% was about $35kg/mm^2$. Tensile strength of SiCw 30 % $400^{\circ}C$ at same time aging was the most excellence, about $40kg/mm^2$. The fracture energy value of composite material at three point bending test was higher than AC4A. Dislocation at matrix of composite material was evenly distributed. But dislocation around whisker of composite material was more existed than matrix. The reasom was thought of pile-up around whisker.

  • PDF

Influence of Applied Pressure on the Microstructure of NCG Reinforced MMC Fabricated by Squeeze Casting (용탕단조법으로 제조된 니켈코팅흑연화이버 강화 금속복합재료의 미세조직에 대한 가압력의 영향)

  • Ryu, Yong-Mun;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.66-70
    • /
    • 1999
  • In order to increase the wettability between ceramic fiber and metal matrix, ceramic fibers are generally coated with metal. In this paper, we examined how the nickel layers coated on continuous graphite fiber to increase the wettability are affected with variation applied pressure. In order to examine the behavior of nickel layer with variation of applied pressure, microstructure and nickel mapping of composites were investigated with SEM, and tensile properties of the composite were tested with UTM. As the applied pressure increases, nickel layers were resolved into the aluminum matrix and ultimate tensile strength of the composite decreased.

  • PDF