• Title/Summary/Keyword: 용접형

Search Result 553, Processing Time 0.031 seconds

Studies on the Possible Utilization of Diplachne fusca L. as a Forage Crop I. Germination Characteristics of Diplachne fusca L. according to Germina Condition (바다새(Diplachne fusca L.) 의 사료작물화 가능성에 관한 연구 I. 발아조건에 따른 바다새 종자의 발아특성)

  • 김창호;양주훈;이효원
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.3
    • /
    • pp.171-178
    • /
    • 1998
  • This experiment was conducted to study on forage utility of Diplachne fusca L. which live in reclaimed saline land of midwest region of Korea. The primary experiment was conducted to know on germination characteristics of Diplachne fusca L. according to storage condition after seed harvesting, light, temperature, flooding depth, salinity and soil covering. The results obtained are summarized as follows; 1. The germination percentage, average days to germination, germination rate and coefficient of germination were not different in existence of light, combination with existence of light and storage condition, but those were higher different in storage condition. 2. The germination characteristics were more higher on the condition of alternating temperature than constant temperature, and it was the highest on the condition of alternating temperature with $35/25^{\circ}C$ and constant temperature with $35^{\circ}C$. 3. There were apparently significant in germination percentage, average days to germination, germination rate and coefficient of germination according to flooding depth. The germination characteristics of D. fusca L. were the highest on the wndition of flooding depth with Ocm and did not germinate on the condition of flooding depth more than 3cm. 4. There were apparently significant in germination percentage, average days to germination, germination rate and coefficient of germination according to salinity. Germination characteristics were the highest on the condition of salinity with 0.2%. There was more than 30% of germination percentage on the condition of salinity with 1% SO Diplachne fuaca L. was suitable to cultivate in reclaimed saline land. 5. The germination percentage, average days to germination, germination rate and coefficient of germination were significantly difference between soil covering. So Germination characteristics were the highest on the condition of soil covering with 0.2cm. But they scarcely germinated on the condition of more than 1cm of the soil covering.

  • PDF

An Estimation of Equivalent Heat Source for Thermal Analysis of Steel Deck Bridge under Pavement Procedure (강바닥판 교량의 포장시 열영향 해석을 위한 등가열원 산정기법)

  • Chung, Heung-Jin;Yoo, Byoung-Chan;Lee, Wan-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.653-660
    • /
    • 2007
  • Since the temperature of asphalt for deck plate of steel bridge during paying procedure is relatively high as $240^{\circ}C\;to\;260^{\circ}C$, the temperature of deck plate of bridge rises mere than $100^{\circ}C$ and excessive displacement and stress could occur. In order to avoid undesirable failure of base plate and determine the optimal pavement pattern, a thorough thermal analysis is needed. General structural model which is made of beam and plate element should be modified for transient heat transfer analysis; asphalt pavement material and convection effect on surface of structure need to be added. A new technique with the Equivalent Heat Source (EHS) for numerical thermal analysis for steel bridge under thermal load of Guss asphalt pavement is proposed. Since plate/beam elements which were generally used for structural analysis for bridge cannot explain convection effect easily on plate/beam surface, EHS which is determined based on calculated temperature with convection effect is used. To verify the EHS proposed in this study, numerical analyses with plate elements are performed and the results are compared with estimated temperatures. EHS might be used for other thermal analyses of steel bridge such as welding residual stress analysis and bridge fire analysis.

Effects of alloy elements on electrochemical characteristics improvement of stainless steel in sea water (해수환경하에서 스테인리스강의 전기화학적 특성 개선을 위한 합금원소의 영향)

  • Lee, Jung-Hyung;Choi, Yong-Won;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.890-899
    • /
    • 2014
  • Austenitic stainless steel is widely used in various industries due to its excellent corrosion resistance. However, Cr carbides precipitation along the grain boundaries after heat treatment or welding may develop Cr depleted zone, which acts as a preferential site for intergranular corrosion attack. To resolve this, carbon stabilizing element such as Ti or Nb are added to suppress formation of Cr carbides. However, there are few reports on corrosion characteristics under seawater environment of the stabilized stainless steel. This study investigated the effects of alloying contents on the electrochemical characteristics in seawater of stainless steel containing stabilizing element(Ti and Nb). To achieve this, the changes on the microstructure due to alloying were observed with microscope, and the electrochemical characteristics were determined by measurement of natural potential and potentiodynamic polarization experiments. The microscopic observation revealed that all specimens had inclusions other than the austenite matrix phase due to the addition of alloying elements. Such inclusions are considered to have different electrochemical characteristics from those of the matrix, and thus a clear distinction was found according to the type of stabilizers and the contents. The results of this study suggest that it is important to consider the effects of alloying contents on the electrochemical characteristics in seawater with the addition of Ti or Nb into austenitic stainless steel.

Numerical Analysis Study for Optimal Design Method on Intersection between Longitudinal and Transversal Rib in Orthotropic Steel Deck Bridge (강바닥판교의 종리브-횡리브 교차연결 상세변화에 따른 최적설계방안의 수치해석 연구)

  • 배두병;공병승
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.333-340
    • /
    • 2004
  • The use of the othotropic steel deck is steadily increased due to the advance of the technology in the steel bridges which recently have been longer. But the othotropic steel deck bridge is the structure that is very fragile to the fatigue, especially, the fatigue crack at the cross of the longitudinal rib and transversal rib is one of the biggest problems that othotropic steel deck bridges have. The causes of these fatigue cracks come from the secondary stress on out-plane behavior of transversal rib. In this study, we conducted the experiment to find the optimal details to improve fatigue strength on intersection between longitudinal rib and transversal rib in the othotropic steel deck bridge through numerical analysis using the experiment of the fatigue in the 3-dimensional real structure and program LUSAS. As a result of study, it is showed that the details of the korean standard section attached with a curved bulkhead plate is the most profitable. And, it is indicated that the stress which is generated when the reform improved section by parametic study can be reduced by about 50% at most or more. Along with the reduced stress and the longer interval between transversal ribs(G=400), the decreased steel amount by 4% and the shortened welding length by 34% make it possible to produce the othotropic steel deck bridge which is strong against fatigue.

Sensitivity Analysis of Nozzle Geometry Variables for Estimating Residual Stress in RPV CRDM Penetration Nozzle (원자로 상부헤드 관통노즐의 잔류응력 예측을 위한 노즐 형상 변수 민감도 연구)

  • Bae, Hong Yeol;Oh, Chang Young;Kim, Yun Jae;Kim, Kwon Hee;Chae, Soo Won;Kim, Ju Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.387-395
    • /
    • 2013
  • Recently, several circumferential cracks were found in the control rod drive mechanism (CRDM) nozzles of U.S. nuclear power plants. According to the accident analyses, coolant leaks were caused by primary water stress corrosion cracking (PWSCC). The tensile residual stresses caused by welding, corrosion sensitive materials, and boric acid solution cause PWSCC. Therefore, an exact estimation of the residual stress is important for reliable operation. In this study, finite element simulations were conducted to investigate the effects of the tube geometry (thickness and radius) on the residual stresses in a J-groove weld for different CRDM tube locations. Two different tube locations were considered (center-hole and steepest side hill tube), and the tube radius and thickness variables ($r_o/t$=2, 3, 4) included two different reference values ($r_o$=51.6, t=16.9mm).

Effect of applied current density on the corrosion damage with galvanostatic corrosion experiment of aluminum alloy for ship (선박용 알루미늄 합금의 정전류 부식 시험에 의한 부식 손상에 미치는 인가 전류밀도의 영향)

  • Kim, Yeong-Bok;Park, Il-Cho;Lee, Jeong-Hyeong;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.106-106
    • /
    • 2018
  • 해양환경용 선박재료는 전기화학적인 부식을 발생시키는 염소이온($Cl^-$)이 다량 포함된 부식 환경에 장기간 노출되어 있어 부식에 대해 취약하다. 따라서 우수한 내식성 및 내침식성을 가진 재료를 선정하는 것은 매우 중요하다. 알루미늄 합금은 충분한 강도와 부동태 피막 형성으로 인해 내식성이 우수하여 해양환경용 선박 재료로서 널리 이용되고 있으며, 이에 따른 부식 특성에 관한 연구도 활발히 이뤄지고 있다. 그러나 선박에서는 부식에 의한 손상뿐만 아니라 전식에 의한 부식 손상도 발생할 수 있다. 특히 선미 부분은 프로펠러의 동합금과 알루미늄 합금의 이종금속 간 전위차에 의한 전식이 발생하여 선체의 다른 부위에 비해 부식이 더 심하게 진행될 수도 있다. 또한 전식은 해안 부두에 접안된 선박의 용접 시미주전류(stray current)에 의한 부식손상이 발생할 수 있으나 이에 대한 연구는 미미한 실정이다. 따라서 본 연구는 해양환경에서의 전식을 인위적으로 모사할 수 있는 부식 정전류 시험법을 이용하여 다양한 크기의 전식 손상을 유발시켰으며, 해양환경 하에서 선박재료로 주로 사용되는 알루미늄 합금인 Al5083-H321, Al5052-O, Al6061-T6에 대한 전식 특성을 비교, 분석하였다. 실험 방법으로 작동전극은 각 재료의 시험편을 $2cm{\times}2cm$ 으로 절단하여 sand paper # 2000 번까지 연마 후 아세톤과 증류수로 세척하고 건조하였으며, 제작된 시험편은 자체 제작한 홀더를 이용하여 $1cm^2$만 노출시킨 후 정전류 가속 실험을 실시하였다. 기준전극은 은/염화은(Ag/AgCl) 전극을, 대응전극은 백금(Pt) 전극을 사용하였다. 정전류 가속 조건은 $0.001mA/cm^2$, $0.1mA/cm^2$, $1mA/cm^2$, $5mA/cm^2$, $10mA/cm^2$의 전류 밀도를 천연해수에서 30분간 인가하였다. 각 재료에 대한 전식 특성은 실험 전후의 무게 감소량으로 전식의 저항 특성을 확인하였다. 그리고 3D 현미경으로 표면 손상 경향과 깊이를 측정하였으며, 주사전자현미경 (SEM)을 통해 표면 형상을 미시적으로 관찰하였다. 부식 정전류 시험 결과 모든 시편에서 $0.01mA/cm^2$에서 미세한 국부적인 부식이 일어났으며, 전류밀도가 증가할수록 표면 전반에 부식이 진행되고 성장하였다. 그리고 모든 인가 전류밀도의 조건에서 Al6061-T6가 5000계열(Al5083-H321, Al5052-O)보다 더 우수한 내식성을 나타났다.

  • PDF

Ultimate Compressive Strength-Based Safely and Reliability Assessment of the Double Skin Upper Deck Structure (압축최종강도(壓縮最終强度)를 기준으로한 이중갑판구조(二重甲板構造)의 안전성(安全性) 및 신뢰성(信賴性) 평가(評價))

  • Jeom-K. Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.150-168
    • /
    • 1991
  • A practical procedure for the ultimate compressive strength-based safety and reliability assessment of the double skin upper deck structure is described. The external compressive stress acting on the upper deck structure which is due to the still water and wave-induced sagging moment is approximately estimated by using the existing rule of classification society. The ultimate compressive stress of double skin structure under the action of sagging moment is analyzed by using idealized structural unit method. Here an idealized plate element subjected to uniaxial load is formulated by idealizing the nonlinear behaviour of the actual element taking account of the initial imperfections in the form of initial deflection and welding residual stress. The interaction effect between the local and global failure in the structure is also taken into consideration. The accuracy of the present method is verified comparing with the present solution and the existing numerical and experimental results for unit member and welded box columns. The safety of the structure is evaluated using the concept of conventional central safety factor and the reliability assessment is made by using Cornel's MVFOSM method. The present procedure is then applied to upper deck structure of double skin product oil carrier. The influence of the initial imperfections and the yield stress of the material on the safety and reliability of the structure is investigated.

  • PDF

Local Behavior of Structural Details for Orthotropic Steel Deck Bridge with Longitudinal Rib of Open Section and Retrofitting Method of Fatigue Cracks (개단면리브를 갖는 강바닥판 교량의 국부거동 분석 및 피로균열 보강방안)

  • Lee, Sung Jin;Kyung, Kab Soo;Lee, Hee Hyun;Jeon, Jun Chang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.33-44
    • /
    • 2013
  • Although many studies have been performed for the structural details of orthotropic steel deck, most of them were focused on the trough rib of standard type, but not for orthotropic steel deck with longitudinal rib of open section used at beginning of the deck. In order to investigate the cause of fatigue crack for orthotropic steel deck bridge serviced 31 years with longitudinal rib of open section, in this study, the behavior characteristics of target structural details were analyzed based on measurement data under real traffic condition. Also the typical loading truck passing the target bridges was estimated with the structural analysis detailed, and the stresses and deformation patterns of target structural details were analyzed by performing the detailed structural analysis. Based upon the analysis, retrofitting methods of the fatigue crack were suggested and its validation was examined. From this study, it was clarified that fatigue crack of longitudinal rib with open section were affected with the stress increment by shear deformation in the rib and the occurrence of alternative stress due to moving vehicle. In addition, it was known that it is important to perform fatigue design reflected the local behavior of the structural details.

Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel (Ni-Cr-Mo계 고강도 저합금강 용접클래드 계면의 미세조직 특성 평가)

  • Kim, Hong-Eun;Lee, Ki-Hyoung;Kim, Min-Chul;Lee, Ho-Jin;Kim, Keong-Ho;Lee, Chang-Hee
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.628-634
    • /
    • 2011
  • SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at $610^{\circ}C$ for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

A Study on the Numerical Analysis Methods for Predicting Strength Test Result of Box Girder under Bending Moment (휨 모멘트를 받는 박스거더 구조 강도 실험에 대한 수치해석 방법에 관한 연구)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.488-496
    • /
    • 2023
  • Ship and bridge structures are a type of long box-shaped structure, and resistance to vertical bending moment is a key factor in their structural design. In particular, because box girders are repeatedly exposed to irregular wave loads for a long time, the continuous collapse behavior of structural members must be accurately predicted. In this study, plastic collapse behavior, including buckling according to load changes of the box girder receiving pure bending moments, was analyzed using a numerical analysis method. The analysis targets were selected as three box girders used in the Gordo experiment. The cause of the difference was considered by comparing the results of the structural strength experiment with those of non-linear finite element analysis. This study proposed a combination of the entire and local sagging shape to reflect the effect of the initial sagging caused by welding heat that is inevitably used to manufacture carbon steel materials. The procedures reviewed in the study and the contents of the initial sagging configuration can be used as a good guide for analyzing the final strength of similar structures in the future.