• Title/Summary/Keyword: 용매 분해

Search Result 860, Processing Time 0.023 seconds

Study on Characteristics of coated fabric using nano-particle (나노물질이 코팅된 직물의 기능성 향상에 관한 연구)

  • Kim, Jong-Won;Yoon, Seok-Han;Yeum, Jeong-Hyun;Bae, Eun-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.55-55
    • /
    • 2011
  • 국내의 등산용 아웃도어 제품의 경우, 기능성인 투습도와 내수압만을 증대시키려는 연구가 주류를 이루고 있었다. 하지만, 실제 등산용 아웃도어의 경우 산악지형인 고지대에서 사용시간이 많으므로, 이에 따른 장시간의 직접적인 태양광 노출로 인한 인체에 치명적인 영향을 야기시키고 있지만, 인체 보호용 헬스케어 아웃도어 제품에 대한 연구는 미흡한 실정이다. 태양광은 자외선 2.5%, 가시광선 51.5%, 적외선 46.0%의 광량 비율을 가지고 있으며, 이 중 자외선은 광량은 적지만 에너지적으로 높아 유기물 분해 및 열화를 일으킨다. 이러한 자외선을 차단하기위해 아웃도어 의류에서는 유무기하이브리드 소재를 표면에 코팅시키게 되며, 기능성 코팅액내에 함유되어 있는 나노분말의 경우 이산화티타늄($TiO_2$), 산화세륨(CeO), 산화아연(ZnO), 삼산화텅스텐($WO_3$), 산화마그네슘(MgO) 등이 주로 사용되어 진다. 본 연구에서는 자외선 흡수소재로 나노산화아연분말을 이용하여, 그 입도 및 코팅용 희석 용매내의 분산성을 확인하고, 함유량을 달리한 코팅 수지를 제조하여, 코팅시편 제조 후 그 특성을 비교/분석하여 자외선 차단 효과를 확인하고자 한다.

  • PDF

Development of New Biodegradable CHITULOSE film from Composite of Chitin and Cellulose (Chitin과 Cellulose 복합체로부터 새로운 생분해성 CHITULOSE film의 개발)

  • 류영석;이충우홍범식윤정원
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.230-236
    • /
    • 1993
  • A Chitulose film was made by dissolving chitin and cellulose in a dimethylacetamide/LiCl solvent system This film was completely degraded in 20 days in soil and penetrated by soil microorganisms in 16-26 hours. A permeability analysis of the film showed that water permeability was in the range of 0-187.5 $1/m^2$/day, depending upon the ratio of chitin to cellulose and decreased with increasing a cellulose content in the Chitulose film The permeabilities of organic compounds, $Na^+$ and oxygen change with the composition of the Chitulose file The film was tested with a burned 2~3degree rat for exploring its use as artificial skin. The rat was completely cured within 31 days without inflammation.

  • PDF

A Study on Dyeing Property of Azo Disperse Dyes Containing Ethyleneimine Derivatives Part (II) -Application to Nylon 6.6 Fabrics- (에틸렌이민 유도체를 갖는 아조계 분산염료의 염색성에 관한 연구(II) - 나일론 6.6 섬유에의 응용 -)

  • Sunwoo, Kong Hyun;Burkinshaw, S. M.
    • Textile Coloration and Finishing
    • /
    • v.8 no.5
    • /
    • pp.49-67
    • /
    • 1996
  • 이 연구의 목적은 에틸렌이민 유도체를 갖는 아조계 분산 염료의 나일론 6.6 섬유에의 응용과 최적화된 나일론 염색 조건의 확립이다. 두 쌍의 염료 A-1/A-2와 D-1/D-2의 최대흡수파장(&{\lambda}_{max}&)을 비교할 경우, 아세톤 최대흡수파장(λ$_{max}$)의 차이가 없거나 적어졌다. 세가지 아지리디닐 모노 아조 염료와 이들 염료의 가수분해 된 형태 그리고 디메닐아닐린계 아조 염료의 나일론 6.6 섬유에 대한 염색 및 견뢰도 성질이 조사되었다. 아지리디닐 염료의 나일론 섬유상의 최대 염착은 pH 5에서 얻어졌으며, 염색된 나일론 섬유에서의 용매추출의 경우 최소 염료 추출은 pH 8.0-10.0 에서 얻어졌다. 아지리디닐 염료 염색된 나일론 섬유상의 세탁 견뢰도와 광 견뢰도는 염색 시 pH의 증가에 따라 증가하였으나, pH 8에서의 견뢰도 성질이 pH 10에서와 비교하여 보다 개선되었다. 세가지 아지리디닐 염료가 이들 염료의 가수분해 된 형태 그리고 디메틸아닐린계 아조 염료와 비교해서 나일론 6.6 섬유상에서 보다 개선된 견뢰도를 나타내었고 이는 염료와 섬유간의 공유 결합으로 기인한 것으로 여겨진다.

  • PDF

Thermal and Electrochemical Stability of Morpholinium Ionic Liquids (모폴린계 이온성 액체의 열 및 전기화학적 안정성)

  • Kim, Hyun-Taek;Hong, Yeon Ki;Kang, Jeong Won;Lee, Young-Woo;Kim, Ki-Sub
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.702-707
    • /
    • 2012
  • During the last few decades, toxic chemicals used in various industries have caused global pollution and the side products such as carbon dioxide and methane gas have contributed to global warming. Thus, it is desirable to develop new alternative solvents. It is well known that ionic liquids display a variety of environmentally friendly physical properties: nonvolatile, nonflammable, wide electrochemical windows, high inherent conductivities, wide thermal operating ranges, chemically inert, and limited miscibilities with organic solvents. Because of these characteristics, ionic liquids are promising candidates as solvents for synthetic chemistries, catalysis, and gas separations. In this study, we synthesized morpholiunium salts as N-ethyl-N-methylmorpholine Bromide, N-butyl-N-methylmorpholine Bromide, N-octyl-N-methylmorpholine Bromide, N-ethyl-N-methylmorpholine Tetrafluoroborate, N-butyl-N-methylmorpholine Tetrafluoroborate, N-octyl-N-methylmorpholine Tetrafluoroborate, N-ethyl-N-methylmorpholine Hexafluorophosphate, N-butyl-N-methylmorpholine Hexafluorophosphate, and N-octyl-N-methylmorpholine Hexafluorophosphate. The melting points, decomposition temperatures and electrochemical stabilities of the salts were measured by DSC, TGA, and CV, respectively. The salts with halide anion showed high melting points ($150{\sim}200^{\circ}C$), low decomposition temperatures ($200{\sim}230^{\circ}C$), narrow electrochemical stabilities (3.4~3.6 V). The synthesized salts with inorganic anions, on the other hand, presented low melting point ($50{\sim}110^{\circ}C$), high decomposition temperatures ($250{\sim}380^{\circ}C$), wide electrochemical stabilities (6.1~6.3 V). We also found that the properties depend on the length of the carbon chain.

1-Ethyl-1-Methyl Piperidinium Bis(Trifluoromethanesulfonyl)Imide as a Co-Solvent for Li-ion Battery Electrodes (혼합 용매로서의 1-Ethyl-1-Methyl Piperidinium Bis(Trifluoromethanesulfonyl)Imide의 리튬 이차 전지용 전극별 거동)

  • Koh, Ah Reum;Kim, Ketack
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.103-110
    • /
    • 2014
  • In the study, a room temperature ionic liquids as a co-solvent was used to evaluate the feasibility with various electrodes in Li-ion batteries. 1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl) imide(PP12 TFSI) is an ionic liquid that melts at $85^{\circ}C$. Pure PP12 TFSI is not able to be used as an electrolyte because it is a solid salt at room temperature. PP12 TFSI is mixed with EC/DEC(1/1 vol.%) to prepare mixed solvents. The electrolyte 1.5M $LiPF_6$ in a mixed solvent having 44 wt.% PP12 TFSI is prepared to evaluated the various electrodes. The electrolytes provides good cycles life of cells with $LiNi_{0.5}Mn_{1.5}O_4(LNMO)$, $LiFePO_4(LFP)$, $Li_4Ti_5O_{12}(LTO)$ and artificial graphite. Further improvement of the cell performances can be accomplished by enhancing wettability of electrolytes to electrodes.

Effect of Exogenous Trehalose on the Solvent Tolerance of Pseudomonas sp. BCNU 106 (유기용매 내성 Pseudomonas sp. BCNU 106 균주의 외인성 트레할로스의 영향)

  • Choi, Hye Jung;Lim, Bo Ra;Ha, Sang-Chul;Kwon, Gi-Seok;Kim, Dong Wan;Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.945-950
    • /
    • 2017
  • To some extent, the growth of solvent-tolerant Pseudomonas sp. BCNU 106 is limited by toxic solvents. Therefore, various strategies to overcome this limitation need to be investigated. One such strategy is to use exogenous trehalose. The highest intracellular trehalose content of 181.88 mM was measured at 12 hr. The extracellular trehalose content decreased rapidly within 12 to 16 hr in the presence of cyclohexane. Moreover, the number of Pseudomonas sp. BCNU 106 cells grown in Luria-Bertani (LB) broth supplemented with 0.1 M trehalose in the presence of 1%(v/v) cyclohexane, hexane, propylbenzene, and m-xylene increased 89.94-, 89.72-, 91.25-, and 118.9-fold, respectively, in comparison to the control level. High survival rates of 80% and 90% were observed in the presence of cyclohexane and hexane by the addition of 0.05 M trehalose for up to 4 hr, respectively. Exogenously-added trehalose was transported into the cells, and it conferred protection against cyclohexane, hexane, propylbenzene, and m-xylene. Adding exogenous trehalose to the growth medium improved the tolerance of Pseudomonas sp. BCNU 106; thus, it is a potential biocatalyst for biotransformation and biodegradation.

Development of a Bioscrubber for Treatment of VOC Emissions from Contaminated Soil with Hydrocarbons (유류오염토양으로부터 발생하는 VOC가스처리를 위한 바이오스크러버 개발)

  • 장윤영;황경엽;곽재호;최대기
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.83-90
    • /
    • 1997
  • Aiming at the treatment of large volumes of gas with a low concentration of poorly water soluble VOC(Volatile Organic Compound), a new system is proposed: the combination absorption tower/bioreactor. In the scrubber part of the bioscrubbing system, the contaminating compounds are absorbed in a aqueous phase. The contaminated scrubbing liquid is transported to the bioreactor, where the compounds are biodegraded by aerobic microorganisms (mainly to carbon dioxide, water, and biomass). In this study, separation of a volatile organic compound(VOC) out of a waste gas stream has been carried out using a re-cyclable high boiling point extrant(HBE). The liquid stream containing a high boiling point entrant(HBE) scrubs the gas stream in a direct gas-liquid countercurrent contacting operation in a packed tower for the removal of said component from the gaseous stream. A packed-bed column using Pall Ring was set up in order to simulate practical conditions for the scrubbing tower. The liquid stream transported to the bioreactor is recovered and recycled to the scrubber. The model gas, which contained 400 mg/$\textrm{m}^3$ of toluene, at a rate of 100 L/min, flowed into the packed column where the scrubbing liquid trickled over the packing in countercurrent to the rising gas at 10~15L/min. The bioscrubber designed for large volume air streams containing VOCs showed removal efficiency up to 80% in an optimum operating conditions during the tests fer removing toluene from an air stream by scrubbing the air stream with HBE.

  • PDF

Determination of Rare Earth Elements by Inductively Coupled Plasma Mass Spectrometry with Introduction of Organic Phase Using Ultrasonic Nebulizer (초음파 분무기를 이용한 유기상의 주입에 의한 희토류 원소의 유도결합 플라스마 질량분석법적 정량)

  • Lee, Sang Hak;Son, Bum Mok
    • Analytical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.127-134
    • /
    • 2002
  • Analytical method to determine rare earth elements which were extracted to organic phase by inductively coupled plasma mass spectrometry(ICP-MS) was investigated. Organic phase which had extracted rare earth elements was directly aspirated into ICP-MS by ultrasonic nebulizer(USN) in order to reduce solvent load to the plasma. Then, the count rate increased when MIBK(methyl isobutyl ketone) was added to EtOH(ethanol) but decreased when 0.03 M HEH(2-ethylhexyl-2-ethylhexyl phosphonic acid, $P_{507}$, PC88A) was added to solvent which mixed MIBK with EtOH. The optimal temperatures of desolvation system were -10 $^{\circ}C$ for the condenser and 150 $^{\circ}C$ for the heating tube. The optimal nebulizer flow rate which gave maximum count rate and minimum reflect power was 0.7 L/min. The optimal pH and extraction time were 4.3 and 10 min for MIBK-0.03 M HEH system. Detection limits which were obtained through calibration curves at the range of 0.2 ${\sim}$ 20 ng/mL were 0.02 ${\sim}$ 0.05 ng/mL under the optimal experimental conditions.

Desorption Characteristics for Previously Adsorbed Gold and Copper-Cyanide Complexes onto Dowex21K XLT Resin Using Mixed Solvent with HCl and Acetone (염산과 아세톤의 혼합용매를 이용한 Dowex21K XLT 수지에 흡착된 금과 구리-시안 착화합물의 탈착 특성)

  • Jeon, Choong
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.487-491
    • /
    • 2013
  • To efficiently desorb gold and copper-cyanide complexes adsorbed onto Dowex21K XLT resin, the mixed solvent with HCl and acetone which is a kind of dipolar aprotic solvent was used as a desorbing agent. The desorption efficiency for gold-cyanide complex was the highest as about 94% when the mixing ratio of HCl and acetone based on volume was the 7:3, however, the value decreased as the ratio of acetone increased. In the case of copper-cyanide complex, most of them was desorbed when the amount of HCl was relatively higher than that of acetone, however, desorption efficiency decreased as the ratio of acetone increased. The desorption efficiency for gold and copper-cyanide complexes was the 94 and 100%, respectively at the 0.6 M of HCl with the 7 (HCl) : 3 (Acetone) of mixing ratio and desorption efficiency for gold-cyanide complex not increased any more even though higher HCl concentration was used. And the desorption efficiency for gold and copper-cyanide complexes was about 100% at the S/L raio ${\leq_-}1.0$ whereas desorption efficiency for gold-cyanide complex was very low as about 20-29% at the S/L ratio > 1.0. Also, most of desorption process for gold and copper-cyanide complexes was completed within 120 min.

Aroma Pattern Analysis of Various Extracts of Agastache rugosa O. Kuntze by Electronic Nose (전자코를 이용한 배초향 추출물의 향기패턴 분석)

  • Lee, Boo-Yong;Yuk, Jin-Su;Oh, Se-Ryang;Lee, Hyeong-Kyu
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 2000
  • Aroma of various extracts of Agastache rugosa O. Kuntze was analyzed by electronic nose with 32 conducting polymer sensor arrays. The 57 extracts were prepared by extraction solvents (hot water, ethanol and NaCl solution), extraction temperatures $(100,\;80\;and\;60^{\circ}C)$, solvent mixture ratios of solvent (10 times 35 times) and parts of Agastache rugosa O. Kuntze(flower, leaf and stem). Aroma pattern of Agastache rugosa O. Kuntze extracts showed big difference in normalized pattern and odor intensity with extraction temperatures and parts, but showed no difference with extraction solvents. Especially in the case of ethanol extracts, because odor of ethanol itself was very strong, difference in aroma of extracts with extraction temperatures and parts did not show through the electronic nose. The organoleptic characteristics such as mint odor, grassy odor, mint taste, medicinal herb taste and sweetness for Agastache rugosa O. Kuntze extracts were determined by the profile test and the result of sensory evaluation by quantitative descriptive analysis was explained to QDA diagram. In correlation with the result of aroma analysis by electronic nose and the sensory evaluation, difference in aroma pattern among the extracts concretely brought to light definite characteristics such as mint odor and mint taste.

  • PDF