Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.8.945

Effect of Exogenous Trehalose on the Solvent Tolerance of Pseudomonas sp. BCNU 106  

Choi, Hye Jung (Department of Biology and Chemistry, Changwon National University)
Lim, Bo Ra (Department of Biology and Chemistry, Changwon National University)
Ha, Sang-Chul (Department of Confectionery Decoration, Daegu Mirae College)
Kwon, Gi-Seok (Department of Medicinal Plant Resources, Andong National University)
Kim, Dong Wan (Department of BioHealth Sciences, Changwon National University)
Joo, Woo Hong (Department of Biology and Chemistry, Changwon National University)
Publication Information
Journal of Life Science / v.27, no.8, 2017 , pp. 945-950 More about this Journal
Abstract
To some extent, the growth of solvent-tolerant Pseudomonas sp. BCNU 106 is limited by toxic solvents. Therefore, various strategies to overcome this limitation need to be investigated. One such strategy is to use exogenous trehalose. The highest intracellular trehalose content of 181.88 mM was measured at 12 hr. The extracellular trehalose content decreased rapidly within 12 to 16 hr in the presence of cyclohexane. Moreover, the number of Pseudomonas sp. BCNU 106 cells grown in Luria-Bertani (LB) broth supplemented with 0.1 M trehalose in the presence of 1%(v/v) cyclohexane, hexane, propylbenzene, and m-xylene increased 89.94-, 89.72-, 91.25-, and 118.9-fold, respectively, in comparison to the control level. High survival rates of 80% and 90% were observed in the presence of cyclohexane and hexane by the addition of 0.05 M trehalose for up to 4 hr, respectively. Exogenously-added trehalose was transported into the cells, and it conferred protection against cyclohexane, hexane, propylbenzene, and m-xylene. Adding exogenous trehalose to the growth medium improved the tolerance of Pseudomonas sp. BCNU 106; thus, it is a potential biocatalyst for biotransformation and biodegradation.
Keywords
Exogenous trehalose; Pseudomonas sp.; solvent tolerance; stress tolerance; trehalose;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Schutte, M. and Fetzner, S. 2007. EstA from Arthrobacter nitroguajacolicus Ru61a, a thermo-and solvent-tolerant carboxylesterase related to class C ${\beta}$-lactamases. Curr. Microbiol. 54, 230-236.   DOI
2 Sharma, S. and Kanwar, S. S. 2014. Organic solvent tolerant lipases and applications. Sci. World J. 2014, 625258.
3 Schiraldi, C., Lernia, I. D. and Rosa, M. D. 2002. Trehalose production: exploiting novel approaches. Trends Biotechnol. 20, 420-425.   DOI
4 Vieille, C. and Zeikus, G. J. 2001. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65, 1-43.   DOI
5 Choi, H. J., Hwang, M. J., Kim, D. W. and Joo, W. H. 2013. Characterization of Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 106. J. Life Sci. 26, 603-607.
6 Choi, H. J., Seo, J. Y., Hwang, S. M., Lee, Y. I., Jeong, Y. K., Moon, J. Y. and Joo, W. H. 2013. Isolation and characterization of BTEX tolerant and degrading Pseudomonas putida BCNU 106. Biotechnol. Bioprocess Eng. 18, 1000-1007.   DOI
7 Crowe, J. H., Hoekstra, F. A. and Crowe, L. M. 1992. Anhydrobiosis. Annu. Rev. Physiol. 54, 579-599.   DOI
8 Csonka, L. N. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53, 121-147.
9 Giaver, H. M., Styrvold, O. B., Kaasen, I. and Stram, A. R. 1988. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J. Bacteriol. 170, 2841-2849.   DOI
10 Heipieper, H. J., Neumann, G., Cornelissen, S. and Meinhardt, F. 2007. Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl. Microbiol. Biotechnol. 74, 961-973.   DOI
11 Lima, V. M. G., Krieger, N., Mitchell, D. A., Baratti, J. C., Filippis, I. and Fontana, J. D. 2004. Evaluation of the potential for use in biocatalysis of a lipase from a wild strain of Bacillus megaterium. J. Mol. Catal. B Enzym. 31, 53-61.   DOI
12 Jaeger, K. E. and Eggert, T. 2004. Enantioselective biocatalysis optimized by directed evolution. Curr. Opin. Chem. Biol. 15, 305-313.
13 Kumar, A., Dhar, K., Kanwar, S. S. and Arora, P. K. 2016. Lipase catalysis in organic solvents: advantages and applications. Biol. Proced. Online 18, 2-11.   DOI
14 Lim, B. R., Choi, H. J., Kwon, G. S. and Joo, W. H. 2015. Enhancement of solvent tolerance in Pseudomonas sp. BCNU 106 with trehalose. Lett. Appl. Microbiol. 61, 607-612.   DOI
15 Ogino, H., Yasui, K., Shiotani, T., Ishihara, T. and Ishikawa, H. 1995. Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme. Appl. Environ. Microbiol. 61, 4258-4262.
16 Paje, M. L., Neilan, B. A. and Couperwhite, I. A. 1997. Rhodococcus species that thrives on medium saturated with liquid benzene. Microbiology 143, 2975-2981.   DOI
17 Purvis, J. E., Yomano, L. P. and Ingram, L. O. 2005. Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl. Environ. Microbiol. 71, 3761-3769.   DOI
18 Hasan, F., Shah, A. A. and Hameed, A. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39, 235-251.   DOI
19 Rahman, R. N., Baharum, S. N., Basri, M. and Salleh, A. B. 2005. High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Anal. Biochem. 341, 267-274.   DOI