DOI QR코드

DOI QR Code

Desorption Characteristics for Previously Adsorbed Gold and Copper-Cyanide Complexes onto Dowex21K XLT Resin Using Mixed Solvent with HCl and Acetone

염산과 아세톤의 혼합용매를 이용한 Dowex21K XLT 수지에 흡착된 금과 구리-시안 착화합물의 탈착 특성

  • Jeon, Choong (Department of Biochemical Engineering, Gangneung-Wonju National University)
  • 전충 (강릉원주대학교 생명화학공학과)
  • Received : 2013.09.30
  • Accepted : 2013.11.08
  • Published : 2013.12.31

Abstract

To efficiently desorb gold and copper-cyanide complexes adsorbed onto Dowex21K XLT resin, the mixed solvent with HCl and acetone which is a kind of dipolar aprotic solvent was used as a desorbing agent. The desorption efficiency for gold-cyanide complex was the highest as about 94% when the mixing ratio of HCl and acetone based on volume was the 7:3, however, the value decreased as the ratio of acetone increased. In the case of copper-cyanide complex, most of them was desorbed when the amount of HCl was relatively higher than that of acetone, however, desorption efficiency decreased as the ratio of acetone increased. The desorption efficiency for gold and copper-cyanide complexes was the 94 and 100%, respectively at the 0.6 M of HCl with the 7 (HCl) : 3 (Acetone) of mixing ratio and desorption efficiency for gold-cyanide complex not increased any more even though higher HCl concentration was used. And the desorption efficiency for gold and copper-cyanide complexes was about 100% at the S/L raio ${\leq_-}1.0$ whereas desorption efficiency for gold-cyanide complex was very low as about 20-29% at the S/L ratio > 1.0. Also, most of desorption process for gold and copper-cyanide complexes was completed within 120 min.

Dowex21K XLT 수지에 흡착된 금과 구리-시안 착화합물을 효과적으로 탈착시키기 위하여 쌍극성의 반 양성자성 용매의 일종인 아세톤을 염산과 섞은 혼합용매를 탈착제로 이용하였다. 염산과 아세톤의 혼합비율(부피비)이 7:3일 때 금-시안 착화합물의 탈착율은 약 94%로서 가장 높았으나 아세톤의 비율이 증가할수록 금-시안 착화합물의 탈착율은 감소하였다. 구리-시안 착화합물의 경우는 염산의 비율이 아세톤의 비율보다 상대적으로 높았을 때 거의 대부분을 탈착시켰으나 아세톤의 비율이 증가할수록 탈착율은 감소하였다. 또한, 0.6 M의 염산을 사용하였을 때(염산과 아세톤의 혼합비율은 7:3으로 고정) 금과 구리-시안 착화합물의 탈착율은 각각 94%와 100%였으며 더 높은 염산 농도를 사용하여도 금-시안 착화합물의 탈착율은 증가하지 않았다. 그리고 고체와 액체의 비(ratio of solid and liquid)가 1.0보다 작을 때는 금과 구리-시안 착화합물 모두 100%의 탈착율을 보여주었으나 1.0보다 클 때에는 금-시안 착화합물의 탈착율이 약 20~29%로서 아주 낮았다. 또한, 금과 구리-시안 착화합물에 대한 대부분의 탈착공정은 120분 내에 이루어졌다.

Keywords

References

  1. Beolchini, F., Pagnanelli, F., Toro, L., and Veglio, F., "Biosorption of Copper by Sphaerotilus Natans Immobilised in Polysulfone Matrix: Equilibrium and Kinetic Analysis," Hydrometallugy, 70, 101-112 (2003). https://doi.org/10.1016/S0304-386X(03)00049-5
  2. Sekhar, K. C., Kamala, C. T., Chary, N. S., Sastry, A. R. K., Rao, T. N., and Vairamani, M., "Removal of Lead from Aqueous Solutions Using an Immobilized Biomaterial Derived from a Plant Biomass," J. Hazard. Mater., 108, 111-117 (2004). https://doi.org/10.1016/j.jhazmat.2004.01.013
  3. Njikam, E., and Schiewer, S., "Optimization and Kinetic Modeling of Cadmium Desorption from Citrus Peels: A Process for Biosorbent Regeneration," J. Hazard. Mater., 213-214(1), 242-248 (2012). https://doi.org/10.1016/j.jhazmat.2012.01.084
  4. Mata, Y. N., Blazquez, M. L., Ballester, A., Gonzalez, F., and Munoz, J. A., "Studies on Sorption, Desorption, Regeneration and Reuse of Sugar-Beet Pectin Gels for Heavy Metal Removal," J. Hazard. Mater., 178(1-3), 243-248 (2010). https://doi.org/10.1016/j.jhazmat.2010.01.069
  5. Jayasinghe, N. S., Lucien, F. P., and Tran, T., "Ion-Exchange for $[Au(CN)^2]^-/Cl^-$ and $[Au(CN)^2]^-/SCN^-$ on Purolite A500 in Mixed Solvents at 303 K," Ind. Eng. Chem. Res., 44, 7496-7504 (2005). https://doi.org/10.1021/ie0504304
  6. Harris, B. G., Barry, J. P., and Monette, S., "Recovery of Gold from Acidic Solutions," U.S. Patent No. 5,028,260 (1990).
  7. Rajasingam, R., Jayasinghe, N. S., Lucien, F. P., and Tran, T., "Selective Elution of the Gold Cyanide Complex from Anion Exchange Resin Using Mixed Solvents," Miner. Eng., 19, 896-903 (2006). https://doi.org/10.1016/j.mineng.2005.09.054
  8. Jeon, C., and Ok, Y. S., "Selective Adsorption of The Gold- Cyanide Complex from Waste Rinse Water Using Dowex21K XLT Resin," J. Ind. Eng. Chem., 2013,http://dx.doi.org/10.1016/j.jiec.2013.07.010.
  9. Jeon, C., and Kwon, T. N., "Desorption and Regeration Characteristics for Previously Adsorbed Indium Ions to Phosphorylated Sawdust," Environ. Eng. Res., 17(2), 65-67 (2012). https://doi.org/10.4491/eer.2012.17.2.065
  10. Lee, J. C., Nguyen, N. V., Jeong, J. K., Jha, M. K., and Osseo- Asare, K., "Comparative Studies on The Adsorption of Au (III) from Waste Rinse Water of Semiconductor Industry Using Various Resins," Hydrometallurgy, 105, 161-167 (2010). https://doi.org/10.1016/j.hydromet.2010.09.003
  11. Mustafa, G., Singh B., and Kookana, R. S., "Cadmium Adsorption and Desorption Behavior on Goethite at Low Equilibrium Concentartion," Chemosphere, 57(10), 1325-1333 (2004). https://doi.org/10.1016/j.chemosphere.2004.08.087
  12. Volesky, B., Biosorption of Heavy Metals: Environmental Impact of Heavy Metals, 1st ed., CRC Press, Florida, 1990, pp. 10-15.

Cited by

  1. Selective Continuous Adsorption and Recovery for Gold-Cyanide Complex in Industrial Wastewater Using Dowex 21K XLT Resin vol.16, pp.3, 2015, https://doi.org/10.14481/jkges.2015.16.3.35