• 제목/요약/키워드: 용량방전에너지

검색결과 165건 처리시간 0.017초

고성능 리튬이온 전지를 위한 저마늄 나노입자의 가스상 레이저 광분해 대량 합성법 개발 (High-Yield Gas-Phase Laser Photolysis Synthesis of Germanium Nanocrystals for High-Performance Lithium Ion Batteries)

  • 김창현;임형순;조용재;정찬수;장동명;명윤;김한성;백승혁;임영록;박정희;송민섭;조원일;차은희
    • 전기화학회지
    • /
    • 제15권3호
    • /
    • pp.181-189
    • /
    • 2012
  • ND-YAG 펄스 레이저를 사용하여 밀폐 반응기에서 가스상 $Ge(CH_3)_4$ (tetramethyl germanium, TMG)을 광분해하여 Ge (germanium) 나노입자를 합성하는 새로운 합성법을 개발하였다. 나노입자의 크기는 간단히 충돌이완가스를 사용하여 5-100 nm로 조절할 수 있었다. $Ge_{1-x}Si_x$ 합금 나노입자는 TMG와 $Si(CH_3)_4$ (tetramethyl silicon, TMS) 혼합가스를 광분해하여 합성하였으며, 이때 반응기 안의 가스 혼합비율에 따라 나노입자의 조성을 조절할 수 있었다. 합성된 나노입자는 얇은 탄소층(1-2 nm) 에 싸여있고, 안정한 콜로이드 용액형태로 잘 분산되어 있다. 합성된 Ge 나노입자와 Ge-RGO (reduced graphene oxide) 하이브리드 구조체 모두 리튬이온전지 특성이 50 사이클 이후 각각 800, 1,100 mAh/g의 높은 방전용량을 갖는 것을 확인하였고, 이 방법은 이전의 Ge 나노입자 합성법과 비교하여 높은 수득률, 우수한 재현성, 성분조절의 용이 하므로, 고성능 리튬 전지의 개발을 위한 음극소재로 기대된다. 이와 같은 Ge 나노입자의 새로운 대량 합성법은 고성능 에너지 변환 소재 실용화에 기여할 것으로 예상된다.

커켄달 효과와 주형법을 통해 합성한 α-Fe2O3 중공입자로 구성된 다공성1차원 구조체의 리튬 이차전지 음극활물질 적용 (Application of Porous Nanofibers Comprising Hollow α-Fe2O3 Nanospheres Prepared by Applying Both PS Template and Kirkendall Diffusion Effect for Anode Materials in Lithium-ion Batteries)

  • 이영광;정순영;조중상
    • Korean Chemical Engineering Research
    • /
    • 제56권6호
    • /
    • pp.819-825
    • /
    • 2018
  • 본 연구는 ${\alpha}-Fe_2O_3$ 중공입자로 구성된 다공성 1차원 나노구조체를 전기방사 공정 및 두단계의 후 열처리 과정을 통해 주형법과 커켄달 효과를 동시 적용하여 합성했다. 열처리 과정 중, 수 nm의 치밀한 Fe 금속입자는 커켄달 효과에 의해 중공구조를 갖는 ${\alpha}-Fe_2O_3$ 입자로 최종 변환되었다. 또한, 전기방사 용액에 첨가한 PS 나노비드는 첫 열처리 과정 중 분해되어 구조체 내 수많은 기공을 형성, 환원 및 산화를 위한 가스들이 구조체 내부로 원활히 침투될 수 있는 역할을 했다. 최종 생성물인 ${\alpha}-Fe_2O_3$ 중공입자로 구성된 다공성 1차원 구조체를 리튬 이차전지의 음극활물질로 적용한 결과, $1.0A\;g^{-1}$의 높은 전류밀도에도 불구하고 30 사이클 후 $776mA\;h\;g^{-1}$의 높은 방전 용량을 나타냈다. 이와 같은 우수한 리튬 저장특성은 본 구조체를 구성하는 중공형 ${\alpha}-Fe_2O_3$ 입자와 입자들 사이의 나노기공으로부터 기인한 결과이다. 본 연구에서 제안한 중공 입자로 구성된 다공성 1차원 나노구조체 합성 방법은 다양한 전이금속 화합물 조성에 적용 가능하므로 에너지 저장 분야를 포함한 여러 분야에 응용 가능하다.

고온 싸이클 성능이 우수한 리튬 이차전지 분리막 (High Performance Separator at High-Temperature for Lithium-ion Batteries)

  • 유승민
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.789-793
    • /
    • 2021
  • 리튬이차전지는 매우 우수한 차세대 에너지 저장장치이다. 하지만, 전해액 내에 존재하는 미량의 수분과 리튬염의 분해에 의해 충방전이 진행됨에 따라 용량이 감소하게 되고, 고온인 경우 이 현상은 더욱 악화된다. 많은 연구자들이 싸이클 성능향상을 위한 연구는 활발히 진행되고 있지만, 근본적인 문제인 수분 및 HF를 제거하는 연구는 많이 진행되고 있지 않다. 본 연구에서는 이를 해결하기위해, 수분 및 HF가 흡착이 가능한 실란계 물질을 분리막에 도입하였다. 우선 아미노실란(APTES, 3-Aminopropyltriethoxysilane)이 코팅된 실리카를 제조 후 에폭시 실란(GPTMS, (3-Glycidyloxypropyl)trimethoxysilane)과 반응을 시켜 표면에 실란이 위치한 실리카를 합성하였다. 실란이 코팅된 세라믹 코팅층을 다공성 폴리에틸렌에 코팅을 하여 세라믹 코팅된 분리막을 제조하였다. FT-IR, TEM을 이용하여 실란이 코팅된 세라믹층의 성분분석, 형상분석을 실시하였으며, 분리막의 세라믹층을 확인하기위해 SEM 분석을 실시하였다. 또한, 제조된 분리막의 60 ℃ 싸이클 성능을 평가하기위해 LMO 반쪽 전지를 제조하였다. GPTMS가 도입된 분리막은 안정적인 고온 싸이클 성능을 보였으며, 이러한 기술은 향후 고온 싸이클 성능을 개선하기 위한 하나의 방법이 될 수 있을 것이다.

탄소나노튜브 도전재 적용을 통한 리튬이온 이차전지용 고용량 SiOx 음극의 사이클 성능개선 (Improved Cycle Performance of High-Capacity SiOx Negative Electrodes with Carbon Nanotube Conducting Agents for Lithium-Ion Batteries)

  • 전향선;류지헌
    • 전기화학회지
    • /
    • 제26권3호
    • /
    • pp.35-41
    • /
    • 2023
  • 리튬이온 이차전지용 음극 활물질인 탄소가 코팅된 실리콘 일산화물(carbon-coated silicon monoxide, c-SiOx)은 용량이 높지만, 충방전 중의 부피변화로 인해 사이클 수명이 제한된다. 특히, 활물질의 큰 부피 변화는 전극의 구조를 변형시켜 전자의 전달경로가 쉽게 손상될 수 있다. 전극에서 전자전달 경로를 형성하는 도전재인 카본블랙 중 일부를 선형의 형태를 지니는 탄소나노튜브(carbon nanotube, CNT)로 대체하여 활물질의 부피변화로 인한 전극의 손상을 완화하여 성능을 개선하고자 한다. 전극 내의 전체 도전재의 함량을 10 중량%로 고정하고, 탄소나노튜브의 상대적인 함량을 0, 2, 5, 10, 25 중량%로 카본블랙의 일부를 대체하여 전극을 제조하고 전기화학적 성능을 평가하였다. 전극 내의 탄소나노튜브의 함량이 증가함에 따라 사이클 수명과 속도특성이 모두 향상된다. 부피 변화가 큰 c-SiOx 음극에 소량의 CNT를 도전재로 적용하는 것으로 전지의 전기화학적 성능을 크게 향상시킬 수 있다. 또한 CNT를 잘 분산시키게 되면 더 적은 양을 사용하면서도 동등한 성능을 구현할 수 있다.

5V급 고전압 양극 LiNi0.5Mn1.5O4 Spinel의 제조와 전기화학적 특성에 관한 연구 (Electrochemical Characteristics of LiNi0.5Mn1.5O4 Spinel as 5 V Class Cathode Material for Lithium Secondary Batteries)

  • 전상훈;오시형;이병조;조원일;조병원
    • 전기화학회지
    • /
    • 제8권4호
    • /
    • pp.172-176
    • /
    • 2005
  • 차세대 5V급 양극활물질로 각광받고 있는 $LiNi_{0.5}Mn_{1.5}O_4$는 기존의 $LiMn_2O_4$ spinel 물질의 $Mn^{3+}$$Ni^{2+}$으로 치환하여 5V 영역에서 $Ni^{2+}/Ni^{4+}$ 산화/환원 반응이 가능하게 한 물질이다. 기존의 $LiMn_2O_4$는 낮은 초기 용량과 충 방전에 따른 빠른 용량감소를 보이는 단점을 가지고 있어 이 문제를 극복하기 위해 Mn의 일부를 다른 금속으로 치환하여 $LiM_yMn_{2-y}O_4$ (M=Cr, Al, Ni, Fe, Co, Cu, Ca)을 만드는 방법이 활발히 연구되고 있다. 본 연구에서는 기계 화학적 합성법을 이용하여 합성한 $LiNi_{0.5}Mn_{1.5}O_4$의 전기화학적 특성에 대해 연구하였다. 이 물질은 기존의 $LiMn_2O_4$보다 에너지 밀도가 높으며 저가 및 친환경성 등으로 앞으로 HEV 등에서 그 활용성이 크게 기대된다. 볼밀을 이용하여 여러가지 조건(출발물질 조건, 볼밀조건, 열처리조건 등)에서 $LiNi_{0.5}Mn_{1.5}O_4$을 합성한 결과 기계화학적 방법으로는 $Ni^{2+}$$Mn^{3+}$를 완전히 치환하지 못하여 $4.0{\sim}4.1V$의 전압에서 $Mn^{3+}/Mn^{4+}$의 산화/환원과 관련된 peak가 발생하였다. Ni 원료 물질로써 수산화 물질을 사용하고 열처리 온도를 $800^{\circ}C$로 하였을 때 최상의 성능을 나타내었다.