DOI QR코드

DOI QR Code

Improved Cycle Performance of High-Capacity SiOx Negative Electrodes with Carbon Nanotube Conducting Agents for Lithium-Ion Batteries

탄소나노튜브 도전재 적용을 통한 리튬이온 이차전지용 고용량 SiOx 음극의 사이클 성능개선

  • Hyang Sun Jeon (Department of Chemical Engineering and Biotechnology, Tech University of Korea) ;
  • Ji Heon Ryu (Graduate School of Convergence Technology and Energy, Tech University of Korea)
  • 전향선 (한국공학대학교 생명화학공학과) ;
  • 류지헌 (한국공학대학교 융합기술에너지대학원)
  • Received : 2023.05.07
  • Accepted : 2023.05.27
  • Published : 2023.08.31

Abstract

The carbon-coated silicon monoxide (c-SiOx), which is a negative electrode active material for lithium-ion batteries (LIBs), has a limited cycle performance due to severe volume changes during cycles, despite its high specific capacity. In particular, the significant volume change of the active material can deform the electrode structure and easily damage the electron transfer pathway. To improve performance and mitigate electrode damage caused by volume changes, we replaced parts of the carbon black conducting agent with carbon nanotubes (CNTs) having a linear shape. The content of the entire conductive material in the electrode was fixed at 10% by mass, and the relative content of CNTs ranged from 0% to 25% by mass to prepare electrodes and evaluate electrochemical performance. As the CNT content in the electrode increased, both cycle life and rate capability improved. Even a small amount of CNT can significantly improve the electrochemical performance of a c-SiOx negative electrode with large volume changes. Furthermore, dispersing CNTs effectively can lead to achieving the equivalent performance with a reduced quantity of CNTs.

리튬이온 이차전지용 음극 활물질인 탄소가 코팅된 실리콘 일산화물(carbon-coated silicon monoxide, c-SiOx)은 용량이 높지만, 충방전 중의 부피변화로 인해 사이클 수명이 제한된다. 특히, 활물질의 큰 부피 변화는 전극의 구조를 변형시켜 전자의 전달경로가 쉽게 손상될 수 있다. 전극에서 전자전달 경로를 형성하는 도전재인 카본블랙 중 일부를 선형의 형태를 지니는 탄소나노튜브(carbon nanotube, CNT)로 대체하여 활물질의 부피변화로 인한 전극의 손상을 완화하여 성능을 개선하고자 한다. 전극 내의 전체 도전재의 함량을 10 중량%로 고정하고, 탄소나노튜브의 상대적인 함량을 0, 2, 5, 10, 25 중량%로 카본블랙의 일부를 대체하여 전극을 제조하고 전기화학적 성능을 평가하였다. 전극 내의 탄소나노튜브의 함량이 증가함에 따라 사이클 수명과 속도특성이 모두 향상된다. 부피 변화가 큰 c-SiOx 음극에 소량의 CNT를 도전재로 적용하는 것으로 전지의 전기화학적 성능을 크게 향상시킬 수 있다. 또한 CNT를 잘 분산시키게 되면 더 적은 양을 사용하면서도 동등한 성능을 구현할 수 있다.

Keywords

Acknowledgement

이 연구는 2023년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(20015536, 소재부품기술개발사업 및 20016103, 이차전지 소재부품 시험평가센터 구축사업).

References

  1. J. M. Tarason and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359-367 (2001). https://doi.org/10.1038/35104644
  2. T.-H. Kim, J.-S. Park, S. K. Chang, S. Choi, J. H. Ryu, and H.-K. Song, The current move of lithium ion batteries towards the next phase, Adv. Energy Mater., 2(7), 860-872 (2012). https://doi.org/10.1002/aenm.201200028
  3. C.-M. Park, J.-H. Kim, H. Kim, and H.-J, Sohn, Li-alloy based anode materials for Li secondary batteries, Chem. Soc. Rev., 39, 3115-3141 (2010). https://doi.org/10.1039/b919877f
  4. X. Zuo, J. Zhu, P. Muller-Buschbaum, and Y.-J. Cheng, Silicon based lithium-ion battery anodes: A chronicle perspective review, Nano Energy, 31, 113-143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013
  5. M. N. Obrovac and V. L. Chevrier, Alloy negative electrodes for Li-ion batteries, Chem. Rev., 114(23), 11444-11502 (2014). https://doi.org/10.1021/cr500207g
  6. T. Chen, J. Wu, Q. Zhang, and X. Su, Recent advancement of SiOx based anodes for lithium-ion batteries, J. Power Sources, 363, 126-144 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.073
  7. H. Kim, T. H. Kim, and J. H. Ryu, Improvement of cycle performance of graphite-silicon monoxide mixture negative electrode in lithium-ion batteries, J. Korean Electrochem. Soc., 22(4), 155-163 (2019).
  8. N.-S. Choi, S.-Y. Ha, Y. Lee, J. Y. Jang, M.-H. Jeong, W. C. Shin, and M. Ue, Recent progress on polymeric binders for silicon anodes in lithium-ion batteries, J. Electrochem. Sci. Technol., 6(2), 35-49 (2015). https://doi.org/10.33961/JECST.2015.6.2.35
  9. C. de las Casas and W. Li, A review of application of carbon nanotubes for lithium ion battery anode material, J. Power Sources, 208, 74-85 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.013
  10. T. Kim, Y. H. Mo, K. S. Nahm, and S. M. Oh, Carbon nanotubes (CNTs) as a buffer layer in silicon/CNTs composite electrodes for lithium secondary batteries, J. Power Sources, 162(2), 1275-1281 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.062
  11. H. Xue, Y. Cheng, Q. Gu, Z. Wang, Y. Shen, D. Yin, L. Wang, and G. Huang, An SiOx anode strengthened by the self-catalytic growth of carbon nanotubes, Nanoscale, 13, 3808-3816 (2021). https://doi.org/10.1039/D0NR08297J
  12. M.-S. Shin, C.-K. Choi, M.-S. Park, and S.-M. Lee, Spherical silicon/CNT/carbon composite wrapped with graphene as an anode material for lithium-ion batteries, J. Electrochem. Sci. Technol., 13(1), 159-166 (2022). https://doi.org/10.33961/jecst.2021.01004
  13. J. Kim, S. Park, S. Hwang, and W.-S. Yoon, Principles and applications of galvanostatic intermittent titration technique for lithium-ion batteries, J. Electrochem. Sci. Technol., 13(1), 19-31 (2022). https://doi.org/10.33961/jecst.2021.00836
  14. J. H. Ryu, J. W. Kim, Y.-E. Sung, and S. M. Oh, Failure modes of silicon powder negative electrode in lithium secondary batteries, Electrochem. Solid-State Lett., 7, A306 (2004).
  15. M. N. Obrovac and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. Solid-State Lett., 7, A93 (2004).
  16. S. Lee, N. Go, J. H. Ryu, and J. Mun, Multidimensional conducting agents for a high-energy-density anode with SiO for lithium-ion batteries, J. Electrochem. Sci. Technol., 10(2), 244-249 (2019).
  17. J. Jung, J. Jang, O. B. Chae, T. Yoon, J. H. Ryu, and S. M. Oh, Reinforcement of an electrically conductive network with ethanol as a dispersing agent in the slurry preparation step, J. Power Sources, 287, 359-362 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.006