• Title/Summary/Keyword: 와인 라벨

Search Result 49, Processing Time 0.046 seconds

인쇄산업의 새로운 트랜드 제시

  • Kim, Sang-Ho;Park, Seong-Gwon
    • 프린팅코리아
    • /
    • v.9 no.9
    • /
    • pp.84-106
    • /
    • 2010
  • 대한인쇄문화협회 (회장 홍우동)와 (주)한국이앤엑스(대표이사 김충진)가 국내 인쇄산업의 발전과 인쇄문화 향상을 위해 주최하는 국내 최대 규모의 인쇄 관련 전시회인 '국제인쇄산업전시회 및 컨퍼런스(KIPES 2010)'를 9월 8일부터 11일까지 4일간 고양시 킨텍스 전시장에서 '상상을 인쇄하는 뉴미디어 세계 (Print the Imagination)'란 주제로 개최한다. 문화체육관광부, 지식경제부 경기도 KOTRA 대한인쇄정보산업협동조합연합회,서울특별시인쇄정보산업협동조합, 대한인쇄정보기술협회 한국화상정보제판공업협동조합, 대한인쇄연구소, 한국제책공업협동조합 한국스크린인쇄공업협회의 후원으로 열리는 KIPES2010에는 인쇄관련 컨퍼런스가 함께 진행될 예정이며 디지털인쇄 시스템, 인쇄 및 프리프레스, 라벨 및 스크린기자재, 제책, 지가공 및 포장기자재 등 인쇄산업의 다양한 부문을 총 망라하고 있다. 이번 전시회에는 23개국 308개사가 참가하게 되며 전체전시규모는 1만$8053m^2$에 달한다. 또한 세계 최고의 금속활자본 직지의 창조적 가치를 알리고 현대 인쇄기술을 알리는 인쇄문화관이 설치, 운영된다. 이번 전시회에 참가하는 주요업체들을 소개한다.

  • PDF

Study on Attack Source Traceback Model of IPv6 (IPv6의 공격 근원지 역추적 모델 연구)

  • 이철수;임인빈;최재호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.301-303
    • /
    • 2004
  • 인터넷의 급성장으로 해킹이나 Dos 공격, 웜, 바이러스 등의 사이버 범죄가 크게 증가하고 지능화되어 최근 역추적에 대한 관심이 날로 증가하고 있다. 보안 도구로 침입탐지시스템(IDS) 이나 침입방지시스템 (IPS) 등이 있으나 해킹이나 DoS 공격을 방어하는데 현실적으로 한계가 있다. 따라서 능동적인 해킹 방어를 위한 기본적인 기술로 해커의 실제 위치를 추적하는 역추적 시스템 기술이 필요하다. 특히 IPv4에서의 역추적 시스템에 대한 연구는 활발하게 이루어지고 있지만 IPv6에 대한 연구는 아직 미흡하다. 본 논문에서는 IPv4의 주소 고갈로 인해 앞으로 이를 대신할 IPv6에 대한 공격 근원지 역추적 시스템 개발이 시급하다고 보고. 해킹을 시도하는 해커의 실제 위치를 실시간으로 추적할 수 있도록 IPv6 헤더 패킷의 트래픽 클래스(Traffic Class)와 플로우 라벨(Flow Label)을 이용하여 IPv6에서의 실시간 네트워크 침입자 역추적 시스템 모델을 제안하고자 한다.

  • PDF

Character-level Region Detection Using Attention Center (어텐션 중심을 이용한 글자 단위 영역 검출)

  • Kim, Jiin;Jeong, Chang-Sung
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.952-953
    • /
    • 2019
  • 최근 딥러닝으로 진행되는 광학 문자 인식 분야는 대부분 단어 단위로 인식하는 것으로 글자 단위의 영역을 검출하는 데에는 적합하지 못하다. 본 연구는 각 글자의 영역을 검출하기 위해 기존의 딥러닝을 이용한 광학 문자 인식 절차인 단어 분리 과정과 단어 인식 과정을 유지하면서 어텐션 중심을 이용하여 각 글자의 영역을 보다 정확하게 검출하는 것을 목표로 한다. 제안하는 모델은 CRAFT 와 Attention Network 를 사용한 OCR 과정을 확장한 모델로 각 단어 문자열 결과물에 각 글자의 영역을 추가로 나타내게 되며 각 글자와 라벨 간의 IOU 평균은 0.671 로 나타났다.

Classification of terminal using YOLO network (YOLO 네트워크를 이용한 단자 구분)

  • Daun Jeong;Jeong Seong-Hun;Jaeyun Gim;jihoon Jung;Kyeongbo Kong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.183-186
    • /
    • 2022
  • 최근 인공지능 기반 객체 탐지 기술이 발전함에 따라 영상 감시, 얼굴 인식, 로봇 제어, IoT, 자율주행, 제조업, 보안 등 다양한 분야에 활용되고 있다. 이에 본 논문은 발전된 객체 탐지 알고리즘을 이용하여 비전문가에겐 생소한 컴퓨터나 전기 장치 등의 '단자(terminal)' 모양을 구별하는 방법을 제안한다. 이를 위해 객체 탐지 프로그램인 You Only Look Once (YOLO) 알고리즘을 이용하여 입력한 단자들의 모양을 검출하는 알고리즘을 구성하였다. 일상에서 쉽게 볼 수 있는 단자들의 이미지(VGA, DVI, HDMI, DP, USB-A, USB-C)를 라벨링하여 데이터셋을 구축하였고, YOLOv4와 YOLOv5 두 버전의 알고리즘을 사용하여 성능을 검증하였다. 실험 결과 mean Average Precision(mAP) 기준 최대 92.9%의 정확도를 얻을 수 있었다. 전기 장치에 따라 단자의 모양이 다양하고, 그 종류 또한 많기 때문에 본 연구가 방송 기술 등의 여러 분야에 응용될 것으로 기대된다.

  • PDF

A Method for Optimized Supervised Learning in Recyclable-PET Sorting based on Vision AI (비전 인공지능 기반의 Recyclable-PET 선별에서 최적의 감독학습 기법)

  • Kim, Ji Young;Ji, Min-Gu;Jung, Joong-Eun
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.640-642
    • /
    • 2021
  • 비전 기반의 재활용-PET 선별공정에서, PET 외 물체와의 식별 성능은 물론 PET 용기 내 포함된 이물질 및 라벨, 뚜껑의 존재 여부, 색상에 대한 검출 성능은 재활용 소재 품질에 중요한 영향을 미친다. 본 연구에서는 비전 인공지능 기반의 재활용-PET 자동 선별 시스템을 제안하고, 인공지능 모델의 제작에서 감독학습의 학습 효과를 최적화하기 위한 데이터 레이블링 기법을 제안한다. 재활용대상 PET 와 이물질 파트가 포함된 용기의 컨베이어벨트 선별공정 혼입을 재현한 실험을 통해서, 재활용 소재화 물량과 순도를 최대화하기 위한 인공지능 모델 생성 방법에 대해 고찰한다.

Bulky waste object recognition model design through GAN-based data augmentation (GAN 기반 데이터 증강을 통한 폐기물 객체 인식 모델 설계)

  • Kim, Hyungju;Park, Chan;Park, Jeonghyeon;Kim, Jinah;Moon, Nammee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1336-1338
    • /
    • 2022
  • 폐기물 관리는 전 세계적으로 환경, 사회, 경제 문제를 일으키고 있다. 이러한 문제를 예방하고자 폐기물을 효율적으로 관리하기 위해, 인공지능을 통한 연구를 제안하고 있다. 따라서 본 논문에서는 GAN 기반 데이터 증강을 통한 폐기물 객체 인식모델을 제안한다. Open Images Dataset V6와 AI Hub의 공공 데이터 셋을 융합하여 폐기물 품목에 해당하는 이미지들을 정제하고 라벨링한다. 이때, 실제 배출환경에서 발생할 수 있는 장애물로 인한 일부분만 노출된 폐기물, 부분 파손, 눕혀져 배출, 다양한 색상 등의 인식저해요소를 모델 학습에 반영할 수 있도록 일반적인 데이터 증강과 GAN을 통한 데이터 증강을 병합 사용한다. 이후 YOLOv4 기반 폐기물 이미지 인식 모델 학습을 진행하고, 학습된 이미지 인식 모델에 대한 검증 및 평가를 mAP, F1-Score로 진행한다. 이를 통해 향후 스마트폰 애플리케이션과 융합하여 효율적인 폐기물 관리 체계를 구축할 수 있을 것이다.

  • PDF

Android API anomaly Detection System Using One-class SVM algorithm (One-class SVM 알고리즘을 이용한 안드로이드 API의 이상치 탐지 시스템)

  • Ji-Eun LEE;Yu-Jun Choi;Yong-Tae Shin
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.562-564
    • /
    • 2023
  • 스마트폰 발전으로 인한 SNS(Social Network Service), 웹 검색 및 활용 등 편리함과 유용성을 가져다 주었지만 안드로이드 APP의 개방성으로 인하여 프로그램의 원칙적 특성을 악용한 취약점이 발생하고 있다. 이를 대응하는 해결방안으로 API에 대한 요청 데이터를 모듈을 통하여 로그 값을 수집한다. 수집된 데이터는 로그 값을 시간을 기준으로 라벨링하여 이상치 탐지 알고리즘인 OCSVM의 이상치 평균으로 사용하여 실시간 데이터 영향을 받는 하이퍼파라미터 C 와 r 값을 Grid Search 기법을 통해 조정함으로써 최적의 파라미터 값을 찾는 시스템을 제안한다.

Active Learning with Pseudo Labeling for Robust Object Detection (강건한 객체탐지 구축을 위해 Pseudo Labeling 을 활용한 Active Learning)

  • ChaeYoon Kim;Sangmin Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.712-715
    • /
    • 2023
  • 딥러닝 기술의 발전은 고품질의 대규모 데이터에 크게 의존한다. 그러나, 데이터의 품질과 일관성을 유지하는 것은 상당한 비용과 시간이 소요된다. 이러한 문제를 해결하기 위해 최근 연구에서 최소한의 비용으로 최대의 성능을 추구하는 액티브 러닝(active learning) 기법이 주목받고 있는데, 액티브 러닝은 모델 관점에서 불확실성(uncertainty)이 높은 데이터들을 샘플링 하는데 중점을 둔다. 하지만, 레이블 생성에 있어서 여전히 많은 시간적, 자원적 비용이 불가피한 점을 고려할 때 보완이 불가피 하다. 본 논문에서는 의사-라벨링(pseudo labeling)을 활용한 준지도학습(semi-supervised learning) 방식과 학습 손실을 동시에 사용하여 모델의 불확실성(uncertainty)을 측정하는 방법론을 제안한다. 제안 방식은 레이블의 신뢰도(confidence)와 학습 손실의 최적화를 통해 비용 효율적인 데이터 레이블 생성 방식을 제안한다. 특히, 레이블 데이터의 품질(quality) 및 일관성(consistency) 측면에서 딥러닝 모델의 정확도 성능을 높임과 동시에 적은 데이터만으로도 효과적인 학습이 가능할 수 있는 메커니즘을 제안한다.

Ileus Detection by Using ART2 and Hough Transform (ART2와 Hough Transform을 이용한 장폐색 영역 검출)

  • Kim, Hyun Woo;Lee, Hae Ill;Park, Seung Ik;Kim, Kwang Beak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.363-365
    • /
    • 2018
  • 대장과 소장에서 모두 폐색 영역을 검출하기 위하여 본 논문에서는 기존에 연구된 장 폐색 영역 검출 방법과 ART2 알고리즘을 이용한 대장 폐색 영역과 소장 폐색 영역을 검출하는 방법을 제안한다. 제안된 방법은 기존에 연구된 방법을 이용하여 ROI 영역을 추출한 후, 추출된 ROI 영역을 ART2 알고리즘을 이용하여 영상을 군집화 한다. 군집화된 ROI 영역과 기존에 연구된 방법으로 X-ray 영상에서 검출한 장 폐색 영역의 형태학적 특징을 비교 및 분석하여 장 폐색의 형태학적 특징을 포함하는 클러스터를 분석한다. 따라서 장 폐색 영역에 해당되는 클러스터로 분류된 영역 내부를 클러스터의 중심에 해당되는 픽셀로 모두 대체한다. 그리고 $3^*3$ 필터를 이용한 침식과 팽창 연산을 적용하여 잡음을 제거한다. 잡음이 제거된 영상에서 각 객체들을 라벨링한 후에 크기를 비교하여 배경과 기타 지방 영역을 제거하고 남은 객체들을 장 폐색 영역으로 검출한다. 제안된 추출 방법을 장 폐색 X-ray 영상을 대상으로 실험한 결과, 기존에 연구된 방법으로 추출에 성공한 대장 장 폐색 영상과 추출에 실패한 소장 폐색 영상 모두에서 추출되는 것을 확인하였다.

  • PDF

A Syllabic Segmentation Method for the Korean Continuous Speech (우리말 연속음성의 음절 분할법)

  • 한학용;고시영;허강인
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.70-75
    • /
    • 2001
  • This paper proposes a syllabic segmentation method for the korean continuous speech. This method are formed three major steps as follows. (1) labeling the vowel, consonants, silence units and forming the Token the sequence of speech data using the segmental parameter in the time domain, pitch, energy, ZCR and PVR. (2) scanning the Token in the structure of korean syllable using the parser designed by the finite state automata, and (3) re-segmenting the syllable parts witch have two or more syllables using the pseudo-syllable nucleus information. Experimental results for the capability evaluation toward the proposed method regarding to the continuous words and sentence units are 73.5%, 85.9%, respectively.

  • PDF