Bulky waste object recognition model design through GAN-based data augmentation

GAN 기반 데이터 증강을 통한 폐기물 객체 인식 모델 설계

  • Published : 2022.06.20

Abstract

폐기물 관리는 전 세계적으로 환경, 사회, 경제 문제를 일으키고 있다. 이러한 문제를 예방하고자 폐기물을 효율적으로 관리하기 위해, 인공지능을 통한 연구를 제안하고 있다. 따라서 본 논문에서는 GAN 기반 데이터 증강을 통한 폐기물 객체 인식모델을 제안한다. Open Images Dataset V6와 AI Hub의 공공 데이터 셋을 융합하여 폐기물 품목에 해당하는 이미지들을 정제하고 라벨링한다. 이때, 실제 배출환경에서 발생할 수 있는 장애물로 인한 일부분만 노출된 폐기물, 부분 파손, 눕혀져 배출, 다양한 색상 등의 인식저해요소를 모델 학습에 반영할 수 있도록 일반적인 데이터 증강과 GAN을 통한 데이터 증강을 병합 사용한다. 이후 YOLOv4 기반 폐기물 이미지 인식 모델 학습을 진행하고, 학습된 이미지 인식 모델에 대한 검증 및 평가를 mAP, F1-Score로 진행한다. 이를 통해 향후 스마트폰 애플리케이션과 융합하여 효율적인 폐기물 관리 체계를 구축할 수 있을 것이다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF- 2021R1A2C2011966).