• Title/Summary/Keyword: 온실가스감축 정책

Search Result 205, Processing Time 0.028 seconds

Domestic Greenhouse Gas Reduction Policy (국내 온실가스 감축 정책)

  • Bae, Sung-Ho
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.8-12
    • /
    • 2011
  • For reducing greenhouse gas emissions, the short-term strategy is of existing energy-efficient appliances to facilitate the spread of energy efficiency improvements to improve energy efficiency, energy saving projects that will include investments to enable. R&D is at the core of the long-term strategy. To reduce energy demand, the equipments and processes improved energy efficiency should be developed. In terms of energy supply, the policies for greenhouse gas reduction is to replace fossil fuels by expanding the supply of renewable energy such as solar, wind, geothermal, biomass and nuclear power as nearly zero-emission of greenhouse gas. In terms of energy consumption, measures to reduce greenhouse gas emissions is in line with the policy for efficiency improvement. The buildings & work-site of high-energy consumption in the building & Industry sectors, should implement a policy to strengthening the voluntary agreement on energy-saving facilities and expand to invest in energy saving facilities.

The Strategies of Transport Demand Management to Decrease the Greenhouse Gases in Transportation Part (교통부문 온실가스 배출량 저감을 위한 교통수요관리 방안 전략 연구)

  • Jeong, Do-Yeong;Yun, Jang-Ho;Park, Sang-U;Kim, Ju-Yeong
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.1
    • /
    • pp.29-38
    • /
    • 2011
  • The growing amount of using the fossil fuel is bringing about environmentally, economically serious problems like as global warming. To solve the problems, the international society has begun to decrease greenhouse gases through the international agreement like as the climate change convention. In South of Korea, it was presented practical goal of Green Development try to decrease greenhouse, which is the future 60 years vision. And, it contains the strategies of Green Development and 5th Plan of Green Development. Nowadays, the government accepted the active alternative scenario 3, which is the goal of 4% decrease in greenhouse gases until 2020's, presented by Presidential Committee on Green Growth. This study established the strategies of Transport Demand Management to decrease the greenhouse gases in transportation part, and then we measured the effect of them. As a result, if it takes effect the aggressive strategies annually, it will cut greenhouse gas pollution by 3.1%, which is 7,590,000t$CO_2eq$, in transportation part. So, we can expect that it would be the effective policy tool to achieve the goal of government, which is the Green Development, if it controls the strategies of TDM effectively by the political needs.

Marginal Abatement Cost Analysis for the Korean Residential Sector Using Bottom-Up Modeling (상향식 모형을 이용한 국내 주거부문의 온실가스 한계감축비용 분석)

  • Chung, Yongjoo;Kim, Hugon;Paik, Chunhyun;Kim, Young Jin
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.58-68
    • /
    • 2015
  • A marginal abatement cost analysis has been conducted to analyze the effects of abatement measures on greenhouse gas (GHG) emissions for the Korean residential sector. A bottom-up model using MESSAGE has been developed by defining the energy demand and constructing the reference energy system for the residential sector. A great amount of activity data has also been analyzed. Abatement potentials and related costs of individual abatement measures are investigated. The result from the marginal abatement cost analysis may provide general guidelines and procedures for the establishment of GHG abatement polices.

A Study on the Order of Priority for the Technoloy·policy of GHG Reduction in Power Plant using AHP (발전부문 AHP기법을 이용한 온실가스감축 기술·정책 우선순위 연구)

  • Lee, Won-Goo;Kim, Hyung-Taek;Park, Yong-Gu
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.130-139
    • /
    • 2015
  • Korea country was set up over 30% greenhouse gas reduction target in comparision with BAU(Business as usal) at the national level, depending on climate change, which have been promoted as several technical and policy planning in order to reduce national greenhouse gas reduction. In this study, we derived the policies and technologies of power plant sector that is a high rate of reduction and public interest, we established a model for a common evaluation indicators and each of the evaluation factors between policy and technology priorities based on appropriate subject experts using analytic hierarchy process(AHP). Further we suggest insight to electricity company to establish the investment strategies of the technology and the associated policy by applying a weight evaluation index presenting a comprehensive priority.

GHG Mitigation Scenario Analysis in Building Sector using Energy System Model (에너지시스템 분석 모형을 통한 국내 건물부문 온실가스 감축시나리오 분석)

  • Yun, Seong Gwon;Jeong, Young Sun;Cho, Cheol Hung;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.5 no.2
    • /
    • pp.153-163
    • /
    • 2014
  • This study analyzed directions of the energy product efficiency improvement and Carbon Tax for the domestic building sector. In order to analyze GHG reduction potential and total cost, the cost optimization model MESSAGE was used. In the case of the "efficiency improvement scenario," the cumulative potential GHG reduction amount - with respect to the "Reference scenario" - from 2010 to 2030 is forecast to be $104MtCO_2eq$, with a total projected cost of 2.706 trillion KRW. In the "carbon tax scenario," a reduction effect of $74MtCO_2eq$ in cumulative potential GHG reduction occurred, with a total projected cost of 2.776 trillion KRW. The range of per-ton GHG reduction cost for each scenario was seen to be approximately $-475{\sim}272won/tCO_2eq$, and the "efficiency improvement scenario" showed as the highest in the order of priority, in terms of the GHG reduction policy direction. Regarding policies to reduce GHG emissions in the building sector, the energy efficiency improvement is deemed to deployed first in the future.

POLICY & ISSUES 기획특집_1 - 온실가스.에너지 목표관리제 주요 정책방향

  • Lee, Yeong-Seok
    • Bulletin of Korea Environmental Preservation Association
    • /
    • s.398
    • /
    • pp.11-13
    • /
    • 2012
  • 정부에서는 2010년 4월 14일 시행된 "저탄소 녹색성장 기본법"의 주요 정책수단으로 "온실가스 에너지 목표관리제도"를 규정하고 있다. 온실가스를 다량으로 배출하거나 에너지를 많이 소비하는 사업장을 관리업체로 지정하고 2012년도 온실가스 감축목표를 설정 통보하였다. 관리업체들은 올해부터 본격적인 온실가스 배출랑 줄이기에 들어가게 된다. 목표관리제의 이행을 통해 온실가스 배출권 거래제의 도입에 필요한 중요한 토대를 마련할 수 있을 것으로 기대가 되고 있다.

  • PDF

A Study on the CO2 Reduction Potential by Means of Increased Efficiency of the Electricity (제조업 전력 사용 효율성 제고를 통한 온실가스(CO2) 감축 잠재량 추정에 관한 연구)

  • Min, Dong-Ki
    • Journal of Environmental Policy
    • /
    • v.9 no.3
    • /
    • pp.143-160
    • /
    • 2010
  • This paper estimate the $CO_2$ reduction potential that can be achieved by improving the technical efficiency of input factors in the manufacturing sector. Technical efficiency in each manufacturing firm was estimated using the DEA technique. Depending on the returns-to-scale assumption selected, average technical efficiency was estimated to be between 0.467 and 0.643. These estimates suggest that, when the efficiency of electricity consumption in the manufacturing sector is improved, the overall $CO_2$ emissions can be reduced by 17.1-25.5%. Recently, the Korean government has adopted a low-carbon-green-growth policy with the goal of reducing greenhouse gas emissions by 30% below the BAU level by year 2020. The analysis of the paper suggests that this goal can be achieved through improved efficiency of electricity consumption.

  • PDF

Comparative Analysis of Greenhouse Gas Inventories and Reduction Targets in 16 Metropolitan Cities in Korea (국내 16개 광역시·도의 온실가스 인벤토리 및 감축목표 비교 연구)

  • Park, Nyun-Bae;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.2
    • /
    • pp.159-175
    • /
    • 2013
  • Emission reduction targets to respond to climate change have been discussed and set locally, nationally and globally. After Korean government set the national target in 2009, 16 metropolitan cities established voluntary emission reduction targets by 2020. This study review and compare historical greenhouse gas emissions, reduction target by 2020 and strategies in 16 metropolitan cities. Most cities chose a consumption-based inventory approach. Some cities set the reduction target excluding land use change and forestry (LUCF) at 30% against business-as-usual by 2020, while others set the absolute reduction target against past year including LUCF. The stringency of reduction target in metropolitan cities was evaluated differently according to the comparative indicators such as the targets against BAU or past year and per capita emission, etc. Key mitigation sectors were different across metropolitan cities. It is suggested that national government share detailed raw data for metropolitan cities' emission inventory with the local government. Using advanced mitigation model and two types' target based on BAU and historical year and integrating local government's climate change plan with its energy plan are also required.