• Title/Summary/Keyword: 온습도 환경

Search Result 146, Processing Time 0.022 seconds

Predicting Influence of Changes in Indoor Air Temperature and Humidity of Wooden Cultural Heritages by Door Opening on Their Conservation Environment (개방에 따른 실내 온습도 변화가 목조문화재 보존환경에 미치는 영향 예측)

  • Kim, Min-Ji;Shin, Hyun-Kyeong;Choi, Yong-Seok;Kim, Gwang-Chul;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.798-803
    • /
    • 2015
  • This study was conducted to predict the effect of door opening in wooden cultural heritages (WCHs) on their conservation environment. For this prediction, measured relative humidity (RH) and surface wood moisture content (MC) of inner part of wood columns in open wooden building and neighboring closed wooden building were compared with minimum RH, including the duration of minimum RH, and MC required for spore germination and resultant growth of wood-degrading fungi reported in some literatures. Moisture conditions, namely RH of inside wooden building and MC of wood was unsuitable for decay and sap-stain fungi all the year round; however, moisture conditions during summer season was suitable for spore germination and resultant growth of surface mold fungi, regardless of door opening. When compared, the duration of minimum (75%) or higher RH and the number of wood columns with MC level greater than the minimum MC (15%) during summer season, the surface mold related to the conservation environment of inside wooden building was somewhat better in open building than in closed building. Rather, doors should be opened in closed building for reducing indoor RH as a necessary measure during summer season when outdoor RH is high.

A Study of Dew Condensation Characteristics to Switchboard due to Environmental Conditions (환경 조건변화에 따른 배전반 결로 특성에 관한 연구)

  • Kim, Jae-Dol;Oh, Kab-Suk
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.540-542
    • /
    • 2011
  • 본 논문은 결로 방지 기능을 가진 배전반 개발을 위해 다양한 온습도 환경 조건에서 결로의 생성 및 제거에 관한 특성을 파악하였다. 획득된 결과는 외부 온도변화에 따라 배전반 내부의 온도도 변화되며, 내외부의 온도차는 일정한 차이를 나타내었다. 결로 생성의 특성은 초기에는 미세한 분무상에서 시간이 경과함에 따라 주위 물방울들과 결합하여 성장하며, 최종적으로는 표면장력이 작용하지만 중력에 의해 하부로 처지면서 떨어지는 과정으로 진행되었다. 또한 히터 등으로 결로 생성조건을 파괴시키면 생성시와 동일한 온습도 조건이 유지되어도 결로는 제거되는 것을 알 수 있었다.

  • PDF

Studies on the Prevention of Excessive Drying Leaves during Burley Tobacco Curing I. Effect of Temperature and Relative Humidity on the Production of Excessive Drying Leaves (버어리종 담배건조시 급건엽 발생방지에 관한 연구 I. 온습도의 영향)

  • 배성국;임해건;추홍구
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.4
    • /
    • pp.420-425
    • /
    • 1986
  • This study was conducted to investigate the influence of air temperature and relative humidity on excessive drying rate of burley tobacco. In experiment I, 4 temperatures and I humidity by day and air curing by night were treated from initial curing stage. In experiment II, 15 combinations of 3 temperatures and 5 humidities were applied from the yellow stage of cure. Yellowish cured leaves resulted from overdrying at high temperature and especially, at low humidity. How- ever, these were not produced at 75-80% RH and under 35$^{\circ}C$ by day with air curing b y night. The proper range of temperature and humidity for desirable color of cured leaf were the combinations of 30$^{\circ}C$, 75-80% RH or 35$^{\circ}C$, 80-85% RH. As excessive drying leaves increased, physical properties of cured leaves were poorer and chemical contents were less decomposed.

  • PDF

Analysis on the Uniformity of Temperature and Humidity According to Environment Control in Tomato Greenhouses (토마토 재배 온실의 환경조절에 따른 온습도 균일도 분석)

  • Nam, Sang-Woon;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.215-224
    • /
    • 2009
  • A survey on the actual state of heating, cooling, ventilation, and air-flow and experimental measurement of temperature and humidity distribution in tomato greenhouse were performed to provide fundamental data required in the development of air-flow control technology. In single-span plastic houses, which account for most of 136 tomato greenhouses surveyed, roof windows, ventilation and air-flow fans were installed in a low rate, and installation specs of those facilities showed a very large deviation. There were no farms installed greenhouse cooling facilities. In the hot air heating system, which account for most of heating type, installation specs of hot air duct showed also a large deviation. The exhaust air temperature and wind speed in hot air duct also were measured to have a big difference depending on the distance from the heater. We are using the maximum difference as indicator to determine whether temperature distribution is uniform. However if the temperature slope is not identical in greenhouse, it can't represent the uniformity. We analyzed relation between the maximum difference and the uniformity of temperature and humidity distribution. The uniformity was calculated using the mean and standard deviation of data from 12 measuring points. They showed high correlation but were represented differently by linear in the daytime and quadratic in the nighttime. It could see that the uniformity of temperature and humidity distribution was much different according to greenhouse type and heating method. The installation guidelines for ventilation and air-flow fan, the spread of greenhouse cooling technology for year-round stable production, and improvement of air duct and heating system, etc. are needed.

Thermal Response of College-age Korean in Summer (여름철 한국 대학생의 열적 반응)

  • 배귀남;김명호;김영일;박경암
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.7-12
    • /
    • 1999
  • 본 연구에서는 14명의 남녀 대학생을 대상으로 열환경 챔버 내에서 여름철 열적 반응을 조사하였다. 여름철 온습도 범위에 해당하는 4가지 온도와 3가지 상대습도의 조합에 의한 8가지 조건에서 실험을 수행하였고, 주위 열환경에 대한 피험자의 심리적 반응을 살펴보기 위하여 전신온냉감과 쾌적감을 조사하였다. 조사결과를 국내 환경 실험실 연구 및 현장조사 결과와 비교하였고, 환경 실험실 연구 수행시의 문제점을 검토하였다.

  • PDF

Plant Factory - A Prospective Urban Agriculture (식물공장 - 미래의 도시농업)

  • 손정익
    • Journal of Bio-Environment Control
    • /
    • v.2 no.1
    • /
    • pp.69-76
    • /
    • 1993
  • 최근 작물의 공장적 재배는 $\boxDr$식물공장$\boxUl$이라는 단어로 대표되는, 새로운 재배방식의 하나로서 세계적으로 주목받고 있다. 식물공장(plant factory or factory- style plant production system)이라는 단어의 의미와 같이 $\boxDr$시설내의 작물을 공장제품의 생산과 동일하게 재배하는 시스템$\boxUl$이다. 즉 자연환경에 의존하지 않고 인공환경하에서 식물을 공장적으로 재배하는 방식을 의미한다. 이를 위해서는 지하부의 양액, 지상부의 온습도, 탄산가스, 광 등에 대한 고도의 환경제어 및 작업의 자동화가 필요하다.(중략)

  • PDF

Smart Control System for Greenhouse Environment (시설원예용 스마트 환경 제어 시스템)

  • Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.907-914
    • /
    • 2017
  • Recently, industrialization and automation for crops has enabled the development of smart farm technology over the world This is due to the need for the automation and convenience of the agricultural system to aging the population and reducing the labor force. In this system, the smart app can control the temperature and humidity that can be conveniently managed by the farmers. It is possible to check the status of the greenhouses in real time in the smartphone and maintain the optimum temperature and humidity, thereby helping to prevent pests and diseases, to grow crops, and to improve the labor force and productivity of farmers and fishermen.

A Study on the Foundation of the Standard of Temperature and Humidity for Preventing Condensation in Apartment Housings (공동주택 세대내 결로방지 설계를 위한 실내외 온습도 기준 수립 연구)

  • Hwang, Ha-Jin;Kim, Jong-Yeop;Lee, Jong-Sung
    • Land and Housing Review
    • /
    • v.2 no.3
    • /
    • pp.269-276
    • /
    • 2011
  • Recently, the chance of dew condensation in apartment buildings is increasing because of several reasons. For example, ventilation rate has been decreased because of high-insulations and airtightness for saving energy. Besides, the humidity has been made by drying washes, cooking and bathing inside of apartment buildings. However, there is lack of resonable design criteria for preventing condensation in real life and real surroundings. Therefore, this study is aimed at making a resonable design criteria of preventing condensation by measuring the indoor temperature and humidity in real life. In addition to this, it is aimed at making a resonable outdoor condition and classifying regions by using weather data. The following are the results. The interior criterion for condensation was set up $25^{\circ}C$ and a relative humidity of 55%. The outdoor criterion for condensation was set up $20^{\circ}C$, $-15^{\circ}C$, and $10^{\circ}C$ respectively for the hard frost, middle, and southern areas.

Analysis of the Effect of Fog Cooling during Daytime and Heat Pump Cooling at Night on Greenhouse Environment and Planst in Summer (하절기 주간 포그 냉방과 야간 히트펌프 냉방이 온실 환경 및 작물에 미치는 영향 분석)

  • Lee, Taeseok;Kim, Jingu;Park, Seokho;Lee, Choungkeun
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.328-334
    • /
    • 2021
  • This study was conducted to analyze the effect of fog cooling during daytime and heatpump cooling at night in greenhouses in summer. During daytime, the average temp. and RH of the control greenhouse which had shading screen were 32.1℃ and 59.4%. and the average temp. and RH of the test greenhouse which had fog cooling were 30.0℃ and 74.3%. At this time, the average outside temp. and RH were 31.4℃ and 57.7%. So, the temp. of the control was 0.7℃ higher than outside temp., but the temp. of the test was 1.4℃ lower than outside and 2.1℃ lower than control. The average RH was 74.3% in the test and 59.4% in control. The average temp. and RH of the control greenhouse which had natural ventilation at night were 25.2℃ and 85.1%, and the average temp. and RH of the test greenhouse which had heat pump cooling were 23.4℃, 82.4%. The average outside temp. and RH at night were 24.4℃ and 88.2%. The temp. of the control was 0.8℃ higher than outside temp., but the temp. of the test was 1.0℃ lower than outside and 1.8℃ lower than control. The average RH was 82.4% in test and 85.1% in control greenhouse. There was no significant difference between the plants growth eight weeks after planting. But after the cooling treatment, the values of stem diameter, plant height, chlorophyll in test were higher than control. The total yield was 81.3kg in test, 73.8kg in control, so yield of test was 10.2% higher than control. As a result of economic analysis, 142,166 won in profits occurred in control greenhouse, but 28,727 won in losses occurred in test greenhouse, indicating that cooling treatment was less economical.