최근 온라인 시장이 성숙해지면서, 추가 성장을 가로막는 많은 문제점이 드러나고 있는데, 이 중 가장 대표적인 문제는 온라인 상품의 동질화로 인한 고객수의 정체를 꼽을 수 있다. 최근 몇 년 사이 온라인 시장의 비중은 많이 증가하였지만, 이제 오프라인으로 영역을 확장하지 않고서는 더 이상의 발전을 기대하기 힘든 상황에 이른 것이다. 이에, 국내외 많은 온라인 기업들은 온라인 채널의 장점에 더해 온라인 플랫폼의 한계를 보완할 수 있는 오프라인 공간을 함께 확보함으로써, 사업영역 및 마케팅 채널을 확대하고자 노력하고 있다. 정보기술(빅데이터, 인공지능 등)을 활용한 대량의 고객 데이터 분석이라는 그들의 경쟁우위를 바탕으로, O4O(Online for Offline) 비즈니스 모델을 구현함으로써, 오프라인으로의 영향력을 꾸준히 강화해나가고 있는 것이다. 한편, 기존의 관련 연구들은 대부분 O2O(Online to Offline) 비즈니스 모델에만 초점을 맞추고 있으며, 최근 몇 년 동안 다양한 산업 분야에서 활발히 시도되고 있는 O4O 비즈니스 모델에 대한 학문적 시도는 아직 많이 부족한 실정이다. 그나마 존재하는 몇몇의 O4O 관련 연구들도 사례분석 및 체험마케팅 기반의 연구에 그치고 있어, O4O 기반 선택속성들과 이들이 고객만족도 및 고객충성도에 미치는 영향에 대한 실증연구가 시급한 상황이다. 이에 본 연구에서는 중국의 대표적인 O4O 비즈니스 모델인 허마셴셩(盒馬鮮生)을 중심으로, 고객의 관점에서 O4O 서비스에 특화된 주요 선택속성을 도출한 후, 이러한 선택속성들이 고객만족도 및 고객충성도에 미치는 영향을 실증해 보고자 한다. 300명의 O4O(허마셴셩) 이용 경험이 있는 고객을 대상으로 한 설문 표본을 구조방정식모델을 활용해 분석한 결과, 총 7개의 O4O 선택속성 가운데 4개(모바일앱품질, 모바일결제, 상품품질 및 매장시설)가 고객만족도에 영향을 미치는 것으로 나타났으며, 고객만족도는 다시 고객충성도(재이용의도, 추천의도 및 브랜드애착)에 유의한 영향을 미치는 것으로 조사되었다. 본 연구의 결과는 O4O 서비스 분야의 관리자가 빠르게 변화하는 고객요구에 잘 적응하고, 나아가 어떤 선택속성에 더 많은 자원을 할당함으로써 고객만족도 및 고객충성도를 제고할 수 있는지를 알려주는 중요한 가이드라인 역할을 할 수 있을 것으로 기대한다.
인터넷 포털 사이트와 사회 관계망 서비스 등의 온라인 공간(online communities)은 시간과 공간의 제약 없이 접속 가능하다는 장점 때문에 많은 사용자들이 의견을 교환하고 정보를 얻기 위해 사용하고 있다. 이와 함께 특정 개인이나 집단의 이익을 위해 의도적으로 유포하는 비정상 정보도 증가하고 있는데 허위 상품 평이나 정치적 선동 의견이 이에 해당한다. 기존에는 이러한 비정상 정보 탐지를 위해 한 시점에서의 비정상 정보를 수집하고 특징을 분석하여 검열 시스템을 제안하였다. 그러나 비정상 정보를 유포하는 기법은 기존의 탐지 시스템을 회피하고 보다 효율적으로 정보를 전파하기 위해 지속적으로 변화하므로 탐지 시스템도 이에 맞추어 변화할 필요가 있다. 따라서 본 논문에서는 비정상 정보 유포 기법의 시간에 따른 변화를 관찰하는 시스템을 제시한다. 이 시스템은 클러스터링(clustering)을 활용해 비정상 정보를 유포 방식에 따라 군집(cluster)으로 분류하며 이러한 군집의 변화를 분석하여 유포 방식의 변화를 추적한다. 제안한 시스템을 검증하기 위해 3번의 선거 기간 전후에 포털 사이트에서 수집된 백만 개 이상의 의견을 대상으로 실험하였으며, 그 결과 비정상 정보 게재에 자주 사용되는 시간, 추천수 조작 방법, 다수의 ID 활용 방법 등에 대한 변화를 관찰할 수 있었다. 이 시스템을 주기적으로 사용해 탐지 시스템을 개선한다면 보다 빠르고 정확하게 비정상 정보의 유포를 탐지할 수 있을 것이다.
본 연구의 목적은 e-커머스의 산업 생태계가 활성화 될 수 있도록 온라인유통산업 이해관계자들이 활용 가능한 e-커머스 활성화 요인과 관련된 선행연구를 정리하고, e-커머스 전문가들을 대상으로 FGI를 진행하여 요인별 중요도를 산출하는 데 있다. 이에 선행연구와 FGI를 통해 도출된 핵심요인을 권혁인(2010)의 3 Level Service Model을 바탕으로 하여 계층구조모델을 구조화하고, AHP 방법론을 활용하여 각 요인의 가중치를 도출하였다. 상위요인에서는 민간(0.542) > 공동(0.237) > 공공(0.222) 순으로 중요하게 나타났다. 하위요인에서는 가중치 내림차순으로 '검색서비스 개발(0.0970)' > '추천서비스 개발(0.0805)' > '소비자 니즈 분석(0.0534)' > '고객 소비 패턴 분석(0.0505)' > '타 플랫폼 연계 서비스 개발(0.0450)' 등으로 나타나 우선순위 15위 이내의 요인을 대상으로 각각의 시사점을 기술하였다. 본 연구의 결과는 e-커머스 기업 뿐만 아니라 e-커머스 산업 전반에 활용될 수 있을 것이며, 빠르게 성장하고 있는 e-커머스 생태계에 학문적 토대를 제공할 수 있을 것이다.
온라인에서 사용자들의 사회적 관계 정보는 상업 활동의 추천 정보와 같은 다른 서비스에 사용될 수 있는 유용한 정보이다. 이 때문에 소셜 네트워크의 시각화를 통한 분석이 많이 연구되고 있다. 기존의 대부분의 시각화 방법은 복잡한 다차원 그래프를 통하여 소셜 네트워크상의 사용자의 관계를 집중적으로 표현하고 있다. 그러나 이러한 방법은 개인 사용자 중심으로 사회관계의 중요도를 직관적으로 파악하기 힘들다. 이러한 문제를 해결하기 위해서 본 논문은 사용자의 상관 관계와 네트워크 노드의 사용자 관계를 이용한 새로운 시각화 방법을 제안한다. 제안방법은 사용자 메시지가 반영된 네트워크상의 내부관계와 네트워크 노드간의 외부관계를 사용하여 사용자간의 관계를 계층적으로 시각화한다.
본 연구에서는 정보원천 신뢰도 이론(source credibility theory)을 기반으로 비개인화된(non-personalized) 추천시스템의 일종인 평판시스템(reputation system)을 위한 평판 순위결정기법을 제안하고, 이러닝 콘텐츠 서비스에 적합한 평판시스템 모형을 제시하였다. 정보원천 신뢰도 요인 중 온라인 구전에 적합한 두 가지 요인(expertise, co-orientation)을 기반으로 사용자 평판정보를 암묵적으로 추출하는 기법을 제안하였다. 즉, 사용자의 과거 이러닝 콘텐츠 평가 정보로부터 사용자의 두 가지 신뢰도 요인을 자동적으로 추출하는 방법을 정의하고, 사용자중 높은 신뢰도를 가진 소수 평가자의 정보만을 가지고 전체 사용자의 콘텐츠 평판정보를 효과적으로 예측할 수 있는 방법을 제안하였다. 콘텐츠 평판정보를 예측하는 단계에 있어, 정보원천 신뢰도 이론이 반영된 수정된 협업 필터링(collaborative filtering) 기법을 적용하였다. 한편, 다양한 평판기법들과의 성능 비교실험을 통해, 제안하는 평판시스템 모형이 명시적인 사용자 평판정보가 부족한 기업대 소비자간(B2C) 이러닝 콘텐츠 전자상거래 사이트에 적합함을 검증하였다.
오프라인 쇼핑몰은 온라인과 비교하여 고객들의 방문 정보를 얻기 어렵기 때문에 맞춤형 제품 추천 시스템의 수준이 온라인과 비교하면 빈약하다. 본 논문에서는 MS Azure의 Face API를 이용해 오프라인 쇼핑몰을 방문하는 고객들의 얼굴을 인식하여 얻은 성별과 나이 정보를 이용해 맞춤형 광고를 제공하는 이동형 로봇 플랫폼을 개발하였다. 개발한 로봇은 구동 실험을 통해 프로세스가 정상 동작하는 것을 보였고, 오픈 얼굴 데이터셋(AFAD)을 사용해 API의 성능을 검증하였다. 개발된 로봇은 오프라인 쇼핑몰의 방문 고객층을 실시간으로 파악하여 맞춤형 광고를 제공함으로써 효율적인 마케팅 효과를 기대할 수 있다.
지난 70여 년간 영화와 텔레비전은 인류의 소통 방식에 획기적인 변화를 가져왔다. 하지만 이러한 발전에도 TV는 전파, 영화는 스크린이라는 매체의 제약으로 인해 다수를 대상으로 하는 소통 수단으로만 사용되어 왔다. 그러나 인터넷과 온라인 비디오의 발전은 이러한 제약을 없애고 지구 반대편에서 올린 유투브 영상을 1억 명의 사람이 시청하는 시대가 왔다. 지금 전달하고자 하는 메시지도 누구에게든 전달될 수 있지만 이러한 메시지를 담은 영상을 제작하는 것은 소통의 마지막 장애물로 남아있다. 이러한 문제점을 해결하기 위해서 본 논문에서는 웹 어플리케이션과 AWS를 통한 동영상제작 프로그램을 구현하였다. 본 시스템은 기본적으로 웹 애플리케이션을 통해 관리자에게 쉬운 인터페이스를 통한 영상제작, 정보관리와 AWS를 통해 인터넷 상의 서버에 프로그램을 두고 컴퓨터나 스마트 폰 등에 할당받은 강의, 학습자료, 추천학습 가이드 등을 제공하여 교육 영상제작 서비스에 효율을 높이기 위해 구현하였다.
인공지능 기술은 제조 로봇, 인공지능 스피커, 로봇 청소기 등 산업 및 스마트홈 분야에서 다양하게 사용되고 있다. 본 논문에서는 RCMS(Real-time Cash Management System)에서 활용하기 위한 인공지능 기반 1:1 챗봇(chatbot) 시스템을 설계 및 구현하였다. 구현한 RCMS 챗봇은 기존 온라인 게시판의 1만 3천 5백여건의 질의응답을 기반으로 연구비 사용, 시스템 사용법 등 9개 영역에 총 210개의 질의시나리오로 구축하였다. 챗봇은 부족한 상담인원 문제를 해소하고, 근무시간 이후에 연구자의 문의에 대응하여 사용자의 만족도를 제고 할 것으로 예상되며, 연구자의 상담문의가 가장 많았던 사용비목에 대한 추천 서비스는 상담건수를 감소시켜 다른 상담문의에 대한 답변의 질적 수준 향상이 기대된다.
웹툰은 인터넷의 특징적 요소들을 활용하여 제작되는 만화 콘텐츠를 온라인 환경에서 소비 가능한 형태로 유통하는 한국형 디지털 만화 플랫폼이다. 최근 웹툰 산업의 급격한 성장과 함께 웹툰 콘텐츠의 공급량이 기하급수적으로 증가함에 따라, 효과적인 웹툰 콘텐츠 추천 방안의 필요성이 커지고 있다. 웹툰은 회화적 요소와 문학적 요소, 디지털 요소의 복합적 산물로서, 독자로 하여금 재미를 느끼게 하고 웹툰이 연출하는 상황에 이입·공감하게 하는 등 소비자의 감성을 자극하는 디지털 콘텐츠 상품이다. 따라서 웹툰이 소비자에게 전달하는 감성이 소비자가 웹툰을 선택함에 있어 중요한 기준으로 작용할 것이라 기대할 수 있다. 본 연구는 기존에 충분히 논의되지 않았던 소비자 감성을 중심으로, 웹툰 콘텐츠의 효과적인 추천을 지원할 수 있는 소비자 감성 패턴맵의 개발을 목적으로 한다. 본 연구의 수행을 위해 '네이버 웹툰' 플랫폼에서 서비스되는 200개 작품에 대한 메타데이터와 소비자 감성어휘 정보를 수집하였다. 분석 목적에 부합하지 않는 작품을 제외한 127개 작품에 대해 488개의 감성어휘가 수집되었다. 이후 수집된 감성어휘들 간 유사감성 통합, 중복감성 배제 과정을 Bottom-up 접근으로 수행하여 총 63개 감성유형으로 축소된 웹툰 특화 감성지표를 구축하였다. 구축한 감성지표에 대한 탐색적 요인분석을 수행하여 웹툰 유형을 분류할 수 있는 3개의 중요 차원을 도출하고, 이를 기준으로 K-Means 클러스터링을 수행하여 전체 웹툰을 4개 유형으로 분류하였다. 각각의 유형에 대해 웹툰-감성 2-Mode 네트워크를 구축하여 웹툰 유형별로 나타나는 감성 패턴의 특징을 살펴보았으며, 프로파일링 분석을 통해 웹툰 유형별 인사이트와 실무적으로 의미 있는 전략적 시사점을 도출할 수 있었다. 본 연구의 결과를 통해 웹툰의 추천 및 분류의 영역에서 소비자 감성의 활용 가능성을 확인하고, 웹툰 생태계 내 구성원들이 소비자를 보다 잘 이해하고 전략을 수립할 수 있도록 돕는 가이드라인을 제시하였다는 점에서 의의가 있다.
최근 인터넷 기반의 웹 및 모바일 기기를 통한 소비 패턴의 다양화와 개성화가 급진전됨에 따라 전통적 유통채널인 오프라인 매장의 효율적 운영이 더욱 중요해졌다. 매장의 매출과 수익 모두를 제고하기 위해 매장은 소비자에게 가장 매력적인 상품을 적시에 공급-판매 해야 하는데 많은 상품들 중에서 어떤 SKU를 취급하는 것이 판매 확률을 높이고 재고 비용을 낮출 수 있는지에 대한 연구가 부족한 실정이다. 특히, 여러 지역에 걸쳐 다수의 오프라인 매장을 통해 상품을 판매하는 기업의 경우 고객에게 매력적인 적절한 SKU를 추천 받아 취급할 수 있다면 매장의 매출 및 수익률 제고에 도움이 될 것이다. 본 연구에서는 개인화 추천에 이용되어 왔던 협업 필터링과 하이브리드 필터링 등의 추천 시스템(Recommender System)을 국가별, 지역별로 복수의 판매 매장을 통해 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하였다. 각 매장의 취급 품목별 구매 데이터를 활용하여 각 매장 별 유사성(Similarity)을 계산하고 각 매장의 SKU별 판매 이력에 따라 협업 필터링을 하여 최종적으로 매장에 개별 SKU를 추천하였다. 또한 매장 프로파일 데이터를 활용하여 주변수 분석 (PCA : Principal Component Analysis) 및 군집 분석(Clustering)을 통하여 매장을 4개의 군집으로 분류한 뒤 각 군집 내에서 협업 필터링을 적용한 하이브리드 필터링 방식으로 추천 시스템을 구현하고 실제 판매 데이터를 바탕으로 두 방식의 성능을 측정하였다. 현존하는 대부분의 추천 시스템은 사용자에게 영화, 음악 등의 아이템을 추천하는 방식으로 연구가 진행되어 왔고 실제로 산업계에서의 적용 또한 개인화 추천 시스템이 주류를 이루고 있다. 그 동안 개인화 서비스 영역에서 주로 다루어져 왔던 이러한 추천 시스템을 동종 브랜드를 취급하는 유통 기업의 매장 단위에 적용하여 각 매장의 취급 SKU를 추천하는 방식에 대한 연구는 거의 이루어지지 않고 있는 실정이다. 기존 추천 방법론의 추천 적용 대상이 '개인의 영역이었다면 본 연구에서는 국가별, 지역별로 복수의 판매 매장을 통해 개인의 영역을 넘어 매장의 영역으로 확대하여 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하고 있다. 또한 기존의 추천시스템은 온라인에 한정되었다면 이를 오프라인으로 활용 범위를 넓히고, 기존 개인을 기반으로 분석을 하는 것보다 매장영역으로 확대 적용하기에 적합한 알고리즘을 개발하기 위해 데이터마이닝 기법을 적용하여 추천 방법을 제안한다. 본 연구의 결과가 갖는 의의는 개인화 추천 알고리즘을 동일 브랜드를 취급하는 복수의 판매 매장에 적용하여 의미 있는 결과를 도출하고 실제 기업을 대상으로 시스템으로 구축하여 활용할 수 있는 구체적 방법론을 제시했다는 데에 있다. 개인화 영역을 위주로 이루어졌던 기존의 추천 시스템과 관련한 학계의 연구 영역을 동종 브랜드를 취급하는 기업의 판매 매장으로 확장시킨 첫 시도라는 데에도 의미가 있다. 2014년 03주차 ~ 05주차 전(全) 매장 판매 수량 실적 Top 100개 SKU로 추천의 대상을 한정하여 협업 필터링과 하이브리드 필터링 방식으로 52개 매장 별로 취급 SKU를 추천하고, 추천 받은 SKU에 대한 2014년 06주차 매장별 판매 실적을 집계하여 두 추천 방식의 성과를 비교하였다. 두 추천 방식을 비교한 이유는 본 연구의 추천 방법이 기존 추천 방식 보다 높은 성과를 입증하기 위해 단순히 오프라인에 협업필터링을 적용한 것을 기준 모델로 정의하였다. 이 기준 모델에 오프라인 매장 관점의 특성을 잘 반영한 본 연구 모델인 하이브리드 필터링 방법과 비교 함으로써 성과를 입증한다. 연구에서 제안한 방식은 기존 추천 방식보다 높은 성과를 나타냈으며, 이는 국내 대기업 의류업체의 실제 판매데이터를 활용하여 입증하였다. 본 연구는 개인 수준의 추천시스템을 그룹수준으로 확장하여 효율적으로 접근하는 방법을 이론적인 프레임 워크를 만들었을 뿐 아니라 실제 데이터를 기반으로 분석하여 봄으로써 실제 기업들이 적용해 볼 수 있다는 점에서 연구의 가치가 크다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.