• Title/Summary/Keyword: 온도효과

Search Result 5,573, Processing Time 0.041 seconds

Characteristics of Lactic Acid Fermentation of Peach Juice by Lactobacillus plantarum KLAB21 Possessing Antimutagenic Effects (항돌연변이원성 Lactobacillus plantarum KLAB21에 의한 복숭아 주스의 젖산발효 특성)

  • Lee, Yong-Ho;Choi, Sang-Won;Park, Heui-Dong
    • Food Science and Preservation
    • /
    • v.15 no.3
    • /
    • pp.469-476
    • /
    • 2008
  • Lactic acid fermentation of peach juice was carried out by using Lactobacillus plantarum KLAB21, a strain with a high level of antimutagenic activity, When the fermentation was carried out at 25, 30, 37 and $40^{\circ}C$, the highest level in the viable counts and acid production was obtained at $37^{\circ}C$. The sterilized peach juice showed a higher level of viable counts and acid production than the non-sterilized juice. And more viable counts and acid production were observed in the juice fermented by L. plantarum KLAB21 only than that obtained by a mixed culture of L. plantarum KLAB21 and Leuconostoc mesenteroides cells. When the lactic acid fermentation was performed for 5 days, the first 3 days of fermentation resulted in an increase of the viable counts from 8.2 to of 9.2 of log cfu/mL which is the highest level, as well as a decrease of the residual reducing sugar content from 5.6 to 0.1 % Decrease in the viable counts and m significant changes in the residual reducing sugar content were observed for further fermentation up to 5 days. However, the titratable acid content increased and the pH value decreased during the fermentation for 5 days to reach the highest titratable acid content (1,98%) and the lowest pH value (3.14) after 5 days of fermentation. HPLC analysis of the organic acids showed 1,236 mg% of lactic acid and 841 mg% of galacturonic acid contents in the fermented juice which were not detected in the fresh juice before fermentation. Antimutagenic effects of $100\;{\mu}L$ of the fermented peach juice supernatant were shown to be 97.7% against MNNG(N-methyl-N'-nitro-N-nitrosoguanidine), and 58.3% against NPD(4-nitro-O-phenylenediamine) in Salmonella enterica serovar Typhimurium TA100.

Microstructure of ZnO Thin Film on Nano-Scale Diamond Powder Using ALD (나노급 다이아몬드 파우더에 ALD로 제조된 ZnO 박막 연구)

  • Park, S.J.;Song, S.O.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.538-543
    • /
    • 2008
  • Recently a nano-scale diamond is possible to manufacture forms of powder(below 100 nm) by new processing of explosion or deposition method. Using a sintering of nano-scale diamond is possible to manufacture of grinding tools. We have need of a processing development of coated uniformly inorganic to prevent an abnormal grain growth of nano-crystal and bonding obstacle caused by sintering process. This paper, in order to improve the sintering property of nano-scale diamond, we coated ZnO thin films(thickness: $20{\sim}30\;nm$) in a vacuum by ALD(atomic layer deposition) Economically, in order to deposit ZnO all over the surface of nano-scale diamond powder, we used a new modified fluidized bed processing replaced mechanical vibration effect or fluidized bed reactor which utilized diamond floating owing to pressure of pulse(or purge) processing after inserted diamond powders in quartz tube(L: 20 mm) then closed quartz tube by porosity glass filter. We deposited ZnO thin films by ALD in closed both sides of quartz tube by porosity glass filter by ALD(precursor: DEZn($C_4H_{10}Zn$), reaction gas: $H_2O$) at $10^{\circ}C$(in canister). Processing procedure and injection time of reaction materials set up DEZn pulse-0.1 sec, DEZn purge-20 sec, $H_2O$ pulse-0.1 sec, $H_2O$ purge-40 sec and we put in operation repetitive 100 cycles(1 cycle is 4 steps) We confirmed microstructure of diamond powder and diamond powder doped ZnO thin film by TEM(transmission electron microscope) Through TEM analysis, we confirmed that diamond powder diameter was some $70{\sim}120\;nm$ and shape was tetragonal, hexagonal, etc before ALD. We confirmed that diameter of diamond powders doped ZnO thin film was some $70{\sim}120\;nm$ and uniform ZnO(thickness: $20{\sim}30\;nm$) thin film was successfully deposited on diamond powder surface according to brightness difference between diamond powder and ZnO.

Quality Evaluation of Minimally Processed Asian Pears (신선편의 식품화된 신고배의 저장 중 이화학적 품질변화)

  • Kim, Gun-Hee;Cho, Sun-Duk;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1523-1528
    • /
    • 1999
  • The consumer's demands for minimally processed fruits and vegetables have been increased rapidly because of its convenient handling, fresh-like quality as well as producing less wastes from the environmental point of view. Asian pears which are one of the main fruits widely produced and consumed in Korea easily lost their characteristics due to browning and softening after cutting. The objective of this study is to investigate the effects of various treatments on delaying deterioration of sliced Asian pears. 'Shingo' pear slices were treated with various solutions $(1%\;NaCl,\;0.2%\;L-cysteine,\;1%\;CaCl_2\;or\;1%\;calcium\;lactate)$ and were packaged with low density polyethylene $(LDPE,\;60\;{\mu}m)$, ceramic $(CE,\;60\;{\mu}m)$ or vacuum $(Ny/PE,\;80\;{\mu}m)$ film at $20^{\circ}C\;and\;0^{\circ}C$. In order to evaluate the quality of packaged sliced pears, quality index was determined in terms of color, firmness, soluble solids, titratable acidity. ascorbic acid, changes of gas composition, microbial test, and sensory quality. The results showed that sliced 'Shingo' pears packaged with CE and vacuum film maintained better quality than with LDPE at $0^{\circ}C\;and\;20^{\circ}C$. To retard browning and softening. 0.2% L-cysteine and 1% NaCl solutions applied for 1 minute were effective to reduce surface browning of sliced pears, and 1% $CaCl_2$ was the most effective to prevent softening.

  • PDF

Method Validation and Quantification of Lutein and Zeaxanthin from Green Leafy Vegetables using the UPLC System (UPLC를 이용한 lutein과 zeaxanthin의 분석법 검증 및 엽채류에서의 정량적 평가)

  • Kim, Suna;Kim, Ji-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.686-691
    • /
    • 2012
  • The objective of this research is to present method development and validation for the simultaneous determination of lutein and zeaxanthin using ultra performance liquid chromatography (UPLC). Also, rapid quantification was performed on six green leafy vegetables (Allium tuberosum, Aster scaber, Hemerocallis fulva, Pimpinella brachycarpa, Sedum sarmentosum and Spinacia oleracea) that are commonly consumed in Korea. Separation and quantification were successfully achieved with a Waters Acquity BEH C18 ($50{\times}2.1mm$, $1.7{\mu}m$) column by 85% methanol within 5 min. Two compounds showed good linearity ($r^2$ > 0.9968) in $1-150{\mu}g/mL$. Limit of detection (LOD) and quantification (LOQ) for lutein and zeaxanthin were 1.7 and 5.1 g/mL and 2.1 and 6.3 g/mL, respectively. The RSD for intra- and inter-day precision of each compound was less than 10.69%. The recovery of each compound was in the range of 91.75-105.13%. Aster scaber and Spinacia oleracea contained significantly higher amounts of lutein ($4.06{\pm}0.24$ and $3.97{\pm}0.10mg$/100 g of fresh weight), respectively.

Evaluation of the Satellite-based Air Temperature for All Sky Conditions Using the Automated Mountain Meteorology Station (AMOS) Records: Gangwon Province Case Study (산악기상관측정보를 이용한 위성정보 기반의 전천후 기온 자료의 평가 - 강원권역을 중심으로)

  • Jang, Keunchang;Won, Myoungsoo;Yoon, Sukhee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • Surface air temperature ($T_{air}$) is a key variable for the meteorology and climatology, and is a fundamental factor of the terrestrial ecosystem functions. Satellite remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides an opportunity to monitor the $T_{air}$. However, the several problems such as frequent cloud cover and mountainous region can result in substantial retrieval error and signal loss in MODIS $T_{air}$. In this study, satellite-based $T_{air}$ was estimated under both clear and cloudy sky conditions in Gangwon Province using Aqua MODIS07 temperature profile product (MYD07_L2) and GCOM-W1 Advanced Microwave Scanning Radiometer 2 (AMSR2) brightness temperature ($T_b$) at 37 GHz frequency, and was compared with the measurements from the Automated Mountain Meteorology Stations (AMOS). The application of ambient temperature lapse rate was performed to improve the retrieval accuracy in mountainous region, which showed the improvement of estimation accuracy approximately 4% of RMSE. A simple pixel-wise regression method combining synergetic information from MYD07_L2 $T_{air}$ and AMSR2 $T_b$ was applied to estimate surface $T_{air}$ for all sky conditions. The $T_{air}$ retrievals showed favorable agreement in comparison with AMOS data (r=0.80, RMSE=7.9K), though the underestimation was appeared in winter season. Substantial $T_{air}$ retrievals were estimated 61.4% (n=2,657) for cloudy sky conditions. The results presented in this study indicate that the satellite remote sensing can produce the surface $T_{air}$ at the complex mountainous region for all sky conditions.

Effects of Planting Density on Growth and Yield in Cassia obtusifolia. L. (결명자(決明子)의 재식밀도(栽植密度)가 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Kim, Young-Guk;Bang, Jin-Ki;Yu, Hong-Seob;Lee, Seoung-Tack;Park, Jong-Sun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.2
    • /
    • pp.95-101
    • /
    • 1997
  • This study was conducted to investigate how a labor saving for conventional hand sowing and respond to major agronomic traits under different planting density in 1993 and 1994. Each trial was a randomized block split plot with row spacing as the main plots and hill spacing as subplots. Sowing rate appeared lower in 20 or 25cm hill spacing using machine seeder than in hand sowing. Sowing time required reduced more 121 hours per hectare in 60cm row, 20cm hill spacings using machine seeder than in hand sowing. Increasing row and hill spacings reduced number of seedling stand per unit $area(m^2)$. Both number of pods per plant and grain weight per plant and showed highly increase in wide planting. Best yield obtained in 60cm row, 20cm hill spacing using machine seeder. Accumulative mean air temperature was positively correlated with stem height, number of pods per plant and yield, otherwise accumulative rainfall was negatively correlated with ones. A highly significant negative correlation was showed between number of seedling stand per unit $area(m^2)$ and number of branches, number of pods per plant, grain weight per plant and yield. Yield was positively correlated with number of branches, number of pods per plant and grain weight per plant.

  • PDF

Viability of Probiotics in Feed under High Temperature Conditions and Their Growth Inhibitory Effect on Contaminant Microbes (고온 조건에서 사료 내 생균제의 생존성 및 오염미생물의 생장 억제 효과)

  • Kim, Gyeom-Heon;Yi, Kwon-Jung;Lee, Ah-Ran;Jang, In-Hwan;Song, In-Geun;Kim, Dong-Woon;Kim, Soo-Ki
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.345-350
    • /
    • 2014
  • The aim of this study was to investigate the effect of high temperature on the viability of probiotic organisms (Bacillus subtilis, Lactobacillus plantarum, and Saccharomyces cerevisiae) mixed with animal feed under controlled conditions by simulating a farm feed bin in the summer. Following inoculation of probiotics into the feed, the pH and probiotic viability were monitored during an 8-day incubation at room temperature. Sterile and non-sterile feeds displayed different patterns of pH changes, with increased pH in non-sterile feed at 2 days, but a pattern of decreasing pH at 4 days. The viabilities of S. cerevisiae and B. subtilis after mono/co-inoculation were maintained without substantial changes during the incubation, whereas L. plantarum viability tended to decline. In both non-sterile and sterile feeds, the probiotics were maintained or grew without any antagonistic effects. Probiotic viability was also tested upon a shift to high temperature ($60^{\circ}C$). There was no distinct change in pH between sterile and non-sterile feeds after the temperature shift. L. plantarum and S. cerevisiae could not survive at the high temperature, whereas B. subtilis displayed normal growth, and it inhibited the growth of contaminant microbes. Fungal growth was not observed in non-sterile feed 2 days after supplementation with B. subtilis. Therefore, heat resistant B. subtilis could be safely used in feed bins to inhibit microbial contamination, even at high temperatures. The prevention of elevated temperature in feed bins is necessary for the utilization of L. plantarum and S. cerevisiae during the summer season.

Free Radical Scavenging Effect and Extraction Condition of Ethanol Extracts and Fractions of Wild Grape Seed (Vitis coignetiea) (머루종자의 적정 추출조건 및 추출 분획물의 Free Radical 소거능 효과)

  • Kim, Nan-Young;Kim, Young-Kuk;Bae, Ki-Ja;Choi, Jae-Ho;Moon, Jea-Hak;Park, Geun-Hyung;Oh, Deog-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.6
    • /
    • pp.755-758
    • /
    • 2005
  • Wild grape is a traditional medicine plant in north-eastern part of Asia and has been known to have healing properties for various illnesses. This study was to determine the optimum extraction condition and antioxidant activity of ethanol extracts of wild grape (V. coignetiae) seed. Also, organic solvent fractions of hexane, chloroform, ethyl acetate and butanol were obtained from the ethanol extract of wild grape seed at different temperatures. Total ethanol extraction yield of wild grape seed ranged from $4\%\;to\;12\%$ depending on the ethanol concentration, extraction temperature and time condition. The highest extraction yield of $11.9\%$ was obtained at $90\%$ ethanol condition for 12 hour at $70^{\circ}C$. However, the strongest free radical scavenging effect $(RC_{50})$ with $20.93\mu g/mL$ was observed in $70\%$ ethanol extract of wild grape seed extracted for 6 hour at $70^{\circ}C,\;while\;RC_{50}\;with\;40.42$\mu g/mL$ was observed in $90\%$ ethanol extract for 12 hour at $70^{\circ}C$. Antioxidant activity of ethanol extracts of wild grape seed increased as total phenol contents increased. Among each fraction obtained from organic solvents, ethyl acetate fraction was found to have the strongest $RC_{50}\;(8.6\mu g/mL)$ and 636.77 mg GAE/g phenol contents .

Optimization of Supercritical Water Oxidation(SCWO) Process for Decomposing Nitromethane (Nitromethane 분해를 위한 초임계수 산화(SCWO) 공정 최적화)

  • Han, Joo Hee;Jeong, Chang Mo;Do, Seung Hoe;Han, Kee Do;Sin, Yeong Ho
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.659-668
    • /
    • 2006
  • The optimization of supercritical water oxidation (SCWO) process for decomposing nitromethane was studied by means of a design of experiments. The optimum operating region for the SCWO process to minimize COD and T-N of treated water was obtained in a lab scale unit. The authors had compared the results from a SCWO pilot plant with those from a lab scale system to explore the problems of scale-up of SCWO process. The COD and T-N in treated waters were selected as key process output variables (KPOV) for optimization, and the reaction temperature (Temp) and the mole ratio of nitromethane to ammonium hydroxide (NAR) were selected as key process input variables (KPIV) through the preliminary tests. The central composite design as a statistical design of experiments was applied to the optimization, and the experimental results were analyzed by means of the response surface method. From the main effects analysis, it was declared that COD of treated water steeply decreased with increasing Temp but slightly decreased with an increase in NAR, and T-N decreased with increasing both Temp and NAR. At lower Temp as $420{\sim}430^{\circ}C$, the T-N steeply decreased with an increase in NAR, however its variation was negligible at higher Temp above $450^{\circ}C$. The regression equations for COD and T-N were obtained as quadratic models with coded Temp and NAR, and they were confirmed with coefficient of determination ($r^2$) and normality of standardized residuals. The optimum operating region was defined as Temp $450-460^{\circ}C$ and NAR 1.03-1.08 by the intersection area of COD < 2 mg/L and T-N < 40 mg/L with regression equations and considering corrosion prevention. To confirm the optimization results and investigate the scale-up problems of SCWO process, the nitromethane was decomposed in a pilot plant. The experimental results from a SCWO pilot plant were compared with regression equations of COD and T-N, respectively. The results of COD and T-N from a pilot plant could be predicted well with regression equations which were derived in a lab scale SCWO system, although the errors of pilot plant data were larger than lab ones. The predictabilities were confirmed by the parity plots and the normality analyses of standardized residuals.

Growth Response of Lettuce to Various Levels of EC and Light Intensity in Plant Factory (배양액 농도와 광도가 식물공장에서 재배되는 적축면 상추의 생장에 미치는 영향)

  • Cha, Mi Kyung;Kim, Ju-Sung;Cho, Young Yeol
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.305-311
    • /
    • 2012
  • To investigate the influence electrical conductivity (EC) of nutrient solution and light intensity on growth of red leafy lettuce, fresh and dry weights, number of leave, chlorophyll concentration and production efficiency were evaluated through nutrient film technique system. The levels of EC were 0.5, 1.0, 1.5, 2.0, 3.0, and $6.0dS{\cdot}m^{-1}$, and those of light intensity were 120, 150, and $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Under photoperiod of 16 h/day, the temperature was maintained in the range of $20{\sim}25^{\circ}C$. Planting density was $10{\times}10cm$ (100 plants/$m^2$). When red leafy lettuce were grown in the EC range of $0.5{\sim}1.5dS{\cdot}m^{-1}$, the fresh and dry weights decreased as the EC levels and light intensity were lowered, however, Hunter's a value showed no significant differences among the treatments of EC and light intensity levels (Ex. 1). The fresh and dry weights and production efficiency ($g{\cdot}FW/kw$) were the highest in the treatment of $3.0dS{\cdot}m^{-1}$ and $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ when crops were grown under the EC range of EC $1.5{\sim}6.0dS{\cdot}m^{-1}$ (Ex. 2). But the fresh and dry weights, number of leaves, and production efficiency of $2.0dS{\cdot}m^{-1}$ were the highest when the light intensity was $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ (Ex. 3). The SPAD value increased gradually as EC levels were elevated. From the above results, we concluded that optimum levels of EC and light intensity were $2.0dS{\cdot}m^{-1}$ and $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively, for production as well as production efficiency of red leaf lettuce in plant factory.