Browse > Article

Growth Response of Lettuce to Various Levels of EC and Light Intensity in Plant Factory  

Cha, Mi Kyung (Major in Plant Resources and Environment, Jeju National University)
Kim, Ju-Sung (Major in Plant Resources and Environment, Jeju National University)
Cho, Young Yeol (Major in Horticultural Science, Jeju National University)
Publication Information
Journal of Bio-Environment Control / v.21, no.4, 2012 , pp. 305-311 More about this Journal
Abstract
To investigate the influence electrical conductivity (EC) of nutrient solution and light intensity on growth of red leafy lettuce, fresh and dry weights, number of leave, chlorophyll concentration and production efficiency were evaluated through nutrient film technique system. The levels of EC were 0.5, 1.0, 1.5, 2.0, 3.0, and $6.0dS{\cdot}m^{-1}$, and those of light intensity were 120, 150, and $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Under photoperiod of 16 h/day, the temperature was maintained in the range of $20{\sim}25^{\circ}C$. Planting density was $10{\times}10cm$ (100 plants/$m^2$). When red leafy lettuce were grown in the EC range of $0.5{\sim}1.5dS{\cdot}m^{-1}$, the fresh and dry weights decreased as the EC levels and light intensity were lowered, however, Hunter's a value showed no significant differences among the treatments of EC and light intensity levels (Ex. 1). The fresh and dry weights and production efficiency ($g{\cdot}FW/kw$) were the highest in the treatment of $3.0dS{\cdot}m^{-1}$ and $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ when crops were grown under the EC range of EC $1.5{\sim}6.0dS{\cdot}m^{-1}$ (Ex. 2). But the fresh and dry weights, number of leaves, and production efficiency of $2.0dS{\cdot}m^{-1}$ were the highest when the light intensity was $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ (Ex. 3). The SPAD value increased gradually as EC levels were elevated. From the above results, we concluded that optimum levels of EC and light intensity were $2.0dS{\cdot}m^{-1}$ and $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively, for production as well as production efficiency of red leaf lettuce in plant factory.
Keywords
dry weight; light intensity; production efficiency; red leaf lettuce; SPAD value;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Barta, D.J. and T.W. Tibbitts. 1991. Calcium localization in lettuce leaves with and without tipburn: Comparison of controlled-environment and field-grown plants. J. Amer. Soc. Hort. Sci. 116:870-875.
2 Choi, K.Y. and Y.B. Lee. 2001. Effect of electrical conductivity of nutrient solution on tipburn incidence of lettuce (Lactuca sativa L.) in a plant factory using an artificial light source. Hort. Environ. Biotech. 42: 53-56.
3 Ikeda, A., Y. Tanimura, K. Ezaki, Y. Kawai, S. Nakayama, K. Iwao, and H. Kageyama. 1992. Environmental control and operation monitoring in a plant factory using artificial light. Acta Hort. 304:151-158.
4 Kozai, T., A. Karion, K.G. Granto, and H.O. Ikeda. 1992. New greenhouse management. 117-120. Askura, Japan.
5 Lee, J.G., S.S. Oh, S.H. Cha, Y.A. Jang, S.Y. Kim, Y.C. Um, and S.R. Cheong. 2010. Effects of red/blue light ratio and short-term light quality conversion on growth and anthocyanin contents of baby leaf lettuce. J. Bio- Env. Con. 19:351-359.
6 Park, M.H. and Y.B. Lee. 1999a. Effects of light intensity and nutrient level on the growth and quality of leaf lettuce in a plant factory. J. Bio-Env. Con. 8:108-114.
7 Park, M.H. and Y.B. Lee. 1999b. Effects of $CO_{2}$ concentration, light intensity and nutrient level on the growth of leaf lettuce in a plant factory. Hort. Environ. Biotech. 40:431-435.
8 Shimizu, H., Y. Saito, H. Nakashima, J. Miyasaka, and K. Ohdoi. 2011. Light environment optimization for lettuce growth in plant factory. Proceedings of the 18th IFAC World Congress 18:605-609.
9 Um, Y.C., S.S. Oh, J.G. Lee, S.Y. Kim, and Y.A. Jang. 2010. The development of container-type plant factory and growth of leafy vegetables as affected by different light sources. J. Bio-Env. Con. 19:333-342.
10 Voipio, I. and J. Autio. 1995. Responses of red-leaved lettuce to light intensity, UV-A radiation and root zone temperature. Acta Hort. 399:183-187.
11 Yoon, C.G. and H.K. Choi. 2011. A study on the various light source radiation conditions and use of LED illumination for plant factory. Journal of KIIEE 25(10): 14-22.