Browse > Article
http://dx.doi.org/10.5532/KJAFM.2017.19.1.19

Evaluation of the Satellite-based Air Temperature for All Sky Conditions Using the Automated Mountain Meteorology Station (AMOS) Records: Gangwon Province Case Study  

Jang, Keunchang (Center for Forest & Climate Change, Department of Forest Conservation, National Institute of Forest Science)
Won, Myoungsoo (Center for Forest & Climate Change, Department of Forest Conservation, National Institute of Forest Science)
Yoon, Sukhee (Center for Forest & Climate Change, Department of Forest Conservation, National Institute of Forest Science)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.19, no.1, 2017 , pp. 19-26 More about this Journal
Abstract
Surface air temperature ($T_{air}$) is a key variable for the meteorology and climatology, and is a fundamental factor of the terrestrial ecosystem functions. Satellite remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides an opportunity to monitor the $T_{air}$. However, the several problems such as frequent cloud cover and mountainous region can result in substantial retrieval error and signal loss in MODIS $T_{air}$. In this study, satellite-based $T_{air}$ was estimated under both clear and cloudy sky conditions in Gangwon Province using Aqua MODIS07 temperature profile product (MYD07_L2) and GCOM-W1 Advanced Microwave Scanning Radiometer 2 (AMSR2) brightness temperature ($T_b$) at 37 GHz frequency, and was compared with the measurements from the Automated Mountain Meteorology Stations (AMOS). The application of ambient temperature lapse rate was performed to improve the retrieval accuracy in mountainous region, which showed the improvement of estimation accuracy approximately 4% of RMSE. A simple pixel-wise regression method combining synergetic information from MYD07_L2 $T_{air}$ and AMSR2 $T_b$ was applied to estimate surface $T_{air}$ for all sky conditions. The $T_{air}$ retrievals showed favorable agreement in comparison with AMOS data (r=0.80, RMSE=7.9K), though the underestimation was appeared in winter season. Substantial $T_{air}$ retrievals were estimated 61.4% (n=2,657) for cloudy sky conditions. The results presented in this study indicate that the satellite remote sensing can produce the surface $T_{air}$ at the complex mountainous region for all sky conditions.
Keywords
Air temperature; MODIS; AMSR2; Brightness temperature; AMOS; Mountain weather;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Lee, J., S. Kang, K. Jang, J. Ko, and S. Y. Hong, 2011: The evaluation of meteorological inputs retrieved from MODIS for estimation of gross primary productivity in the US Corn Belt Region. Korean Journal of Remote Sensing 27(4), 481-494.   DOI
2 Lee, S. Y., I.-U. Chung, and S. K. Kim, 2006: A study of on establishment of the optimum mountain meteorological observation network system for forest fire prevention. Korean Journal of Agricultural and Forest Meteorology 8(1), 36-44.
3 Masuoka, E., A. Fleig, R. E. Wolfe, and F. Patt, 1998: Key characteristics of MODIS data products. IEEE Transactions on Geoscience and Remote Sensing 36(4), 1313-1323.   DOI
4 National Institute Forest Of Science, 2017: http://mtweather.nifos.go.kr/
5 Prihodko, L., and S. N. Goward, 1997: Estimation of air temperature from remotely sensed surface observations. Remote Sensing of Environment 60(3), 335-346.   DOI
6 Ryu, Y., S. Kang, S. Moon, and J. Kim, 2008: Evaluation of land surface radiation balance derived from moderate resolution imaging spectroradiometer (MODIS) over complex terrain and heterogeneous landscape on clear sky days. Agricultural and Forest Meteorology 148(10), 1538-1552.   DOI
7 Seemann, S. W., E. E. Borbas, J. Li, W. P. Menzel, and L. E. Gumley, 2006: MODIS atmospheric profile retrieval algorithm theoretical basis document. NASA, Greenbelt, MD, USA, 1-4.
8 Shin, H. S., E. Chang, and S. Hong, 2014: Estimation of near surface air temperature using MODIS land surface temperature data and geostatistics. Journal of Korea Spatial Information Society 22(1), 55-63.
9 Stisen, S., I. Sandholt, A. Norgaard, R. Fensholt, and L. Eklundh, 2007: Estimation of diurnal air temperature using MSG SEVIRI data in West Africa. Remote Sensing of Environment 110(2), 262-74.   DOI
10 Tang, B., and Z. Li, 2008: Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data. Remote Sensing of Environment 112(9), 3482-3492.   DOI
11 Vogt J. V., A. A. Viau, and F. Paquet, 1997: Mapping regional air temperature fields using satellite-derived surface skin temperatures. International Journal of Climatology 17(14), 1559-1579.   DOI
12 Williamson, S., D. Hik, J. Gamon, J. Kavanaugh, and G. Flowers, 2014: Estimating temperature fields from MODIS land surface temperature and air temperature observations in a sub-Arctic Alpine environment. Remote Sensing 6, 946-63.   DOI
13 Borbas, E. E., S. W. Seemann, A. Kern, L. Moy, J. Li, L. E. Gumley, and W. P. Menzel, 2011: MODIS atmospheric profile retrieval algorithm theoretical basis document. 1-32.
14 Aumann, H. H., M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. staelin, L. L. strow, and J. Susskind, 2003: AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems. IEEE Transactions on Geoscience and Remote Sensing 41(2), 253-264.   DOI
15 Bisht, G., and R. L. Bras, 2010: Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study. Remote Sensing of Environment 114(7), 1522-1534.   DOI
16 Bisht, G., V. Venturini, S. Islam, and L. Jiang, 2005: Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days. Remote Sensing of Environment 97(1), 52-67.   DOI
17 Choi, G., 2011: Variability of Temperature Lapse Rate with Height and Aspect over Halla Mountain. Journal of climate research 6(3), 171-186.
18 Jang, K., S. Kang, H. Kim, and H. Kwon, 2009: Evaluation of Shortwave Irradiance and Evapotranspiration Derived from Moderate Resolution Imaging Spectroradiometer (MODIS). Asia-Pacific Journal of Atmospheric Sciences 45(2), 233-246.
19 Choi, G., B. Lee, S. Kang, and J. Tenhunen, 2010: Variations of summertime temperature lapse rate within a mountainous basin in the Republic of Korea -A case study of Punch Bowl, Yanggu in 2009. Journal of the Korean Association of Regional Geographers 16(4), 339-354.
20 IPCC, 2007: Climate change 2014: The physical science basis. Cambridge University Press, NY, USA.
21 Jang, K., S. Kang, J. S. Kimball, and K. S. Hong, 2014a: Retrievals of all-weather daily air temperature using MODIS and AMSR-E data. Remote Sensing 6, 8387-8404.   DOI
22 Jang, K., S. Kang, and S. Y. Hong, 2014b: Comparison of collection 5 and 6 Aqua MODIS07_L2 air and dew temperature products with groung-based observation dataset. Korean Journal of Remote Sensing, 30(5), 571-586.   DOI
23 Jang, K., S. Kang, Y. Lim, S. Jeong, J. Kim, J. S. Kimball, and S. Y. Hong, 2013: Monitoring daily evapotranspiration in Northeast Asia using MODIS and a regional Land Data Assimilation System. Journal of Geophysical Research Atmospheres 118(23), 12927-12940.   DOI
24 Jones, L. A., C. R. Ferguson, J. S. Kimball, K. Zhang, S. T. K. Chan, K. C. McDonald, E. G. Njoku, and E. F. Wood, 2010: Satellite microwave remote sensing of daily land surface air temperature minima and maxima from AMSR-E. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 3, 111-23.   DOI
25 Kim, D. S., and B. H. Kwon, 2007: Vertical structure of the coastal atmospheric boundary layer based on Terra/MODIS data. Atmosphere 17(3), 281-289.