• Title/Summary/Keyword: 오염토양복원

Search Result 383, Processing Time 0.028 seconds

Heating Characteristics of the Soils for the Application of Electrical Resistance Heating with Soil Vapor Extraction (전기 저항열을 이용한 유류 오염토 복원공정 적용을 위한 토양의 가열특성 연구)

  • Yun Yeo-Bog;Ko Seok-Oh;Park Gi-Ho;Park Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 2006
  • This study was performed to evaluate the heating characteristics of soils for the application of electrical resistance heating process combined with soil vapor extraction. Laboratory tests were conducted to find out optimum heating conditions by the adjustment of electrical supply and electrode. Results show that fine soil particles are more efficient for electrical heating. As water content of soil increases, more efficient electrical heating is observed. However, as the soil is saturated with water above the soil porosity, decrease in the heating efficiency is observed. The higher the voltage, is and the shorter the distance between the electrodes is, the better the heating efficiency is. The soil contaminated by fuel is also more efficient than non-contaminated soil in electrical resistance heating. From the relationship between the intial electrical current and the conductivity obtained in this study, soil temperature by electrical heating can be estimated.

Ozone-Enhanced Remediation of Diesel-Contaminated Soil (II): A Column Study (Ozone에 의한 유류오염토양 복원 연구 (II) : 토양 컬럼상에서의 오존 산화)

  • Choi, Heechul;Heechul;Lim, Hyung-Nam;Kim, Kwang-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1825-1832
    • /
    • 2000
  • Column experiments were conducted by using soil columns, to investigate feasibility and efficiency of in-situ ozone enhanced remediation for diesel-contaminated soil. The injection of gaseous ozone into soil column revealed the enhanced decomposition of ozone due to the catalytic reaction between ozone and metal (e.g., Fe, Mn etc.) oxides as evidenced by as much as 25 times shorter half-life of ozone in a sand packed column than in a glass beads packed column. Substantial retardation in the transport of and the consumption of ozone were observed in the diesel contaminated field soil and sand packed columns. After 16 hrs ozonation, 80% of the initial mass of diesel (as diesel range organic) concentration of $800{\pm}50mg/kg$, was removed under the conditions of the flow rate of 50mL/min and $6mg-O_3/min$. Whereas, less than 30% of diesel was removed in the case of air injection. Analysis of the residual TPH(total petroleum hydrocarbon) and selected 8 aliphatics of diesel compounds in the inlet and the outlet of the column confirmed that diesel nonselectively reacted with ozone and then shifted to lower carbon numbered molecules. Water content also was found to be an important parameter in employing ozone to the hydrocarbon-contaminated soil.

  • PDF

Effective Methods of Fenton Oxidation for Remediation of Diesel-contaminated Soil (효과적인 펜톤산화처리법을 이용한 경유오염토양 복원에 관한 연구)

  • Lee, Eui-Sang;Kim, Ji-Young;Oh, Se-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2771-2778
    • /
    • 2009
  • This study was performed to solve the problem of the 2nd contamination and excessive treatment cost by determining proper quantity of hydrogen peroxide, iron catalyst, mixing method, and input mode that should be provided when Fenton oxidation (this is mostly applied to small contaminated areas such as service station sites) is applied to the excavated and diesel-contaminated soil. Soil artificially contaminated with 10000mg/kg of diesel was used for the experiment. In the batch test, diesel removal seemed to increase as the concentration of hydrogen peroxide increases. When iron catalyst was added, removal efficiency of diesel was much higher than the time when hydrogen peroxide was added solely. The removal efficiency showed greater when Fe(III) was added compared to Fe(II). Column experiment was executed on the basis of results of the batch test to investigate adequate reagent mixing and input methods. The highest efficiency was acquired in the case of separate input mode. Also, it was found that when inputting Fe(III) iron catalyst and separately inputting hydrogen peroxide after dividing the bundle in the column, removal efficiency was 92.8%, which was 9 times greater than that of the first method, 10.5%, when only hydrogen peroxide was added. Thus, it is expected that if the result of this research is applied to Fenton oxidation for the remediation of soil contaminated by diesel, the problem of the 2nd contamination and excessive treatment charge caused by excessive addition of hydrogen peroxide and iron catalyst could be solved.

Interaction Between Plants and Rhizobacteria in Phytoremediation of Heavy Metal- Contaminated Soil (중금속 오염 토양의 식물상 복원에 있어 식물과 근권세균의 상호작용)

  • Koo So-Yeon;Cho Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.83-93
    • /
    • 2006
  • In heavily industrialized areas, soil sites are contaminated with high concentrations of heavy metals. These pollutants are highly accumulated to the human body through the food web and cause serious diseases. To remove heavy metals from the soil, a potential strategy is the environmental friendly and cost effective phytoremediation. For the enhancement of remediation efficiency, the symbiotic interaction between the plant and plant growth-promoting rhizobacteria (PGPR) has been attended. In this review, the interaction of the plant and PGPR in the heavy metal-contaminated soil has been reviewed. The physicochemical and biological characteristics of the rhlzosphere can influence directly or indirectly on the biomass, activity and population structure of the rhizobacteria. The root exudates are offered to the soil microbes as useful carbon sources and growth factors, so the growth and metabolism of rhizobacteria can be promoted. PGPR have many roles to lower the level of growth-inhibiting stress ethylene within the plant, and also to provide iron and phosphorus from the soil to plant, and to produce phytohormone such as indole acetic acid. The plant with PGPR can grow better in the heavy metal contaminated soil. Therefore higher efficiency of the phytoremediation will be expected by the application of the PGPR.

Emerging Remediation Technologies for the Contaminated Soil/Groundwater in the Metal Mining Areas (금속광산지역 오염 토양/지하수의 복원기술 동향)

  • 김경웅
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.99-106
    • /
    • 2004
  • Pollution reduction and/or control technology becomes one of the pressing post-semiconductor research field to lead an advanced industrial structure. Soil/groundwater remediation techniques may act as a core technology which will create many demands on pollution reduction areas. A plenty numbers of abandoned metal mines were left without any remediation action in Korea, and it may be potential sources of heavy metal and As contamination in the ecosystem. In order to bring this soil contamination to a settlement, the emerging soil/groundwater remediation techniques should be introduced. Main research topics in the United States and Europe move towards the clean remediation technology without any secondary impact and the feasible application of developing technique into the field scale study. With these advantages, several soil/groundwater techniques such as electrokinetic soil processing, permeable reactive barrier, stabilization/solidification, biosorption, soil flushing with biosurfactant, bioleaching and phytoremediation will be summarized in this paper.

Identification of soil Remedial Goal due to Arsenic in Soil near Abandoned Mine- Approach to Regarding Future Land Use - (폐광산 지역의 비소오염에 대한 복원목표 설정 - 미래 토지용도를 고려한 접근방법 -)

  • 이효민;윤은경;최시내;박송자;황경엽;조성용;김선태
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.13-29
    • /
    • 1998
  • Recently, It is increasing popularity to research on the soil remediation in aspect of management by reason of the hazardous impact on the contaminated soil in Korea. It was investigated high levels of arsenic salts in soil near abandoned five mines(Darak, Daduk, Jingok, Dalsung, Ilkwang) located in Youngnam area. Arsenic, classified as group A(Human Carcinogens) from IRIS, have shown statistically significant increment in skin cancer with oral exposure. This paper was conducted to predict excess cancer risk value (to the skin cancer) based on multiple pathway such as soil ingestion, dermal uptake and food(plant) ingestion contaminated by arsenic, and also, to identify the remedial goal regarded in future land use. The mine having the highest arsenic level was Daduk(mean : 1950mg/kg) and the next rank was Jingok(1690mg/kg), Ilkwang(352.37mg/kg), Dalsung(86.08mg/kg), Darak(0.83mg/kg). The chronic daily intake to the multiple exposure were calculated using Monte-Carlo simulation regarded in future land use and used q: value was $1.5(mg/kg/day)^{-1}$ to the oral proposed by IRIS(1997). The computated excess cancer risk 95th value to all the mine regarding future land use as residential and rural area were more than $10^{-4}$. If the level of acceptable risk is aimed for 1$\times$$10^{-6}$, it could be used Darak as commercial and industrial area without soil remediation due to the lowest risk value(6$\times$$10^{-8}$ and 3$\times$$10^{-8}$). Computated remedial goal based on 1$\times$$10^{-6}$ of acceptable risk to the future land use as the residential, rural, commercial and industrial area were 0.02mg/kg, 0.003mg/kg, 97.31mg/kg and 194.62mg/kg, respectively.

  • PDF

Oxidative-Coupling Reaction of Aromatic Compounds by Mn Oxide and Its Application for Contaminated Soil Remediation (망간산화물에 의한 방향족 유기화합물의 산화-공유결합반응 및 이를 이용한 오염토양 정화기법)

  • Kang, Ki-Hoon;Shin, Hyun-Sang;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.115-123
    • /
    • 2007
  • Immobilization of contaminants in subsurface environment is one of the major processes that determine their fate. Especially, immobilization by oxidative-coupling reactions, which is irreversible in the bio-chemical reactions and results in a significant reduction of toxicity, can be successfully applied for the remediation of contaminated soil and groundwater more effectively than conventional degradation. As a catalyst of this oxidative-coupling reaction, manganese oxide has many advantages in practical aspects as compared to microorganisms or oxidoreductive enzymes extracted from microorganisms, fungi, or plants. This paper is to present recent research achievements on the treatment mechanisms of various organic contaminants by manganese oxide. Especially, treatment methods of non-reactive organic compounds to Mn oxide are the main focus; i.e., application of reaction mediator, PAHs treatment method, combination with an appropriate pretreatment such as reduction using $Fe^0$, which suggests the potential of a wide range of engineering application. Concerning the natural carbon cycle processes, immobilization and stabilization by oxidative coupling reaction can be effectively applied as a environmentally-friend remediation method especially for aromatic contaminants which possess a high resistance to degradation.

Environmentally Friendly Controlling Way of Storm Water by Using Rain Garden (레인가든을 적용한 환경 친화적 빗물 처리방안 검토)

  • Kim, Sun-Mi;Lee, Insung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.5
    • /
    • pp.58-66
    • /
    • 2007
  • 과거 빗물은 토양으로 흡수되어 정화작용을 거쳐 호수나 강으로 유입됨으로써 하천의 수질 오염을 방지할 수 있었으나 개발로 인한 도시의 불투수층 증가로 빗물은 여과없이 도시의 오염물질을 쓸어 내리며 하천으로 유입되어 하천의 수질 오염이 날로 심해지고 범람하는 빗물은 짧은 시간에 도시를 물에 잠기게 한다. 오염물질을 함유한 빗물의 정화 및 빗물 유량 조절을 위한 방안으로 미국에서는 레인 가든의 조성이 활발하게 진행되고 있다. 본 원고에서는 레인 가든의 환경적 의의와 조성방법, 그리고 빗물로부터 하천을 보호하기 위한 미국의 관련 규정을 알아보고 레인 가든의 효과에 대해 검토하고자 한다. 레인 가든은 오염 물질의 하천 유입방지 및 빗물의 저장 역할 외에 도시지역에서 최소 관리로 생물 서식처 역할을 함으로써 생태도시 조성 기술을 한 단계 높이는 방안이 될 것이다.

The Comparison of Remediation Efficiency for Contaminated Soils under Vertical Drain System by Numerical Analysis Method (수치해석 방법에 의한 연직배수시스템의 오염토양 복원효율 비교분석)

  • Shin, Eun-Chul;Lee, Sung-Chul;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • The remediation efficiency of the contaminant through laboratory experiment of the pilot scale was evaluated for the influence factors in the contaminated soils for the applicability of the prefabricated vertical drain system. It was performed numerical analysis by the method that the finite element and finite differences based on the drawn result about the remediation of contaminated soils. The parametric analysis for the applied parameter value was performed. In the pilot scale remediation experiment, as a result of evaluating with the minimum limit concentration ratio, in the case of dense and loose conditon, the remediation time was much longer. And the remediation efficiency was rapidly progressed as the time was elapsed. It was analyzed that the contaminant concentration is reduced around the extraction well as the contamination remediating rate by numerical analysis result as the time was elapsed.