Browse > Article

Interaction Between Plants and Rhizobacteria in Phytoremediation of Heavy Metal- Contaminated Soil  

Koo So-Yeon (Department of Environmental Science and Engineering, Ewha Womans University)
Cho Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
Publication Information
Microbiology and Biotechnology Letters / v.34, no.2, 2006 , pp. 83-93 More about this Journal
Abstract
In heavily industrialized areas, soil sites are contaminated with high concentrations of heavy metals. These pollutants are highly accumulated to the human body through the food web and cause serious diseases. To remove heavy metals from the soil, a potential strategy is the environmental friendly and cost effective phytoremediation. For the enhancement of remediation efficiency, the symbiotic interaction between the plant and plant growth-promoting rhizobacteria (PGPR) has been attended. In this review, the interaction of the plant and PGPR in the heavy metal-contaminated soil has been reviewed. The physicochemical and biological characteristics of the rhlzosphere can influence directly or indirectly on the biomass, activity and population structure of the rhizobacteria. The root exudates are offered to the soil microbes as useful carbon sources and growth factors, so the growth and metabolism of rhizobacteria can be promoted. PGPR have many roles to lower the level of growth-inhibiting stress ethylene within the plant, and also to provide iron and phosphorus from the soil to plant, and to produce phytohormone such as indole acetic acid. The plant with PGPR can grow better in the heavy metal contaminated soil. Therefore higher efficiency of the phytoremediation will be expected by the application of the PGPR.
Keywords
Heavy metal; phytoremediation; plant growth-promoting rhizobacteria; interaction;
Citations & Related Records

Times Cited By SCOPUS : 4
연도 인용수 순위
1 Dakora, F. D. and D. A. Phillips. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245: 35-47   DOI   ScienceOn
2 Delorme, T. A., J. V. Gagliardi, J. S. Angle, and R. L. Chaney. 2001. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Can. J. Microbiol. 47: 773-77   DOI
3 Fan, T. W. -M., A. N. Lane, M. Shenker, J. P. Bertley, D. Crowley, and R. M. Higashi. 2001. Comprehensive chemical profiling of gramineous plant root exudates using highresolution NMR and MS. Phytochemistry 57: 209-221   DOI   ScienceOn
4 Gilbert, E. S. and D. E. Crowley. 1997. Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl. Environ. Microbiol. 63: 1933-1938
5 Giovanelli, J., S. H. Mudd, and A. H. Datko. 1980. Sulfur amino acids in plants, p. 453-505. In Miflin, B.J. (ed.), Amino acids and derivatives. The biochemistry of plants: a comprehensive treatise, vol. 5. Academic Press, New York, U.S.A
6 Glick, B. R., D. M. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentration by plant growthpromoting bacteria. J. Theor. Biol. 190: 63-68   DOI   ScienceOn
7 Hall, J. A., D. Peirson, S. Ghosh, and B. R. Glick. 1996. Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Isr. J. Plant Sci. 44: 37-42
8 John, P. 1991. How plant molecular biologists revealed a surprising relationship between two enzymes, which took an enzyme out of a membrane where it was not located, and put it into the soluble phase where it could be studied. Plant Mol. Biol. Rep. 9: 192-194   DOI
9 Kumino, T., K. Seaki, K. Nagaoka, H. Oyaizu, and S. Matsumoto. 2001. Characterization of coper-resistant bacterial community in rhizosphere of highly copper-contaminated soil. Eur. J. Soil Biol. 37: 95-102   DOI   ScienceOn
10 Ma, L. Q., K. M. Komer, C. Tu, W. Zhang, Y. Cai., and E. D. Kennelly. 2001. A fern that hyperaccumulates arsenic. Nature 409: 579   DOI   ScienceOn
11 Mordukhova, E. A., N. P. Skvortsova, V. V. Kochetkov, A. N. Dubeikovskii, and A. M. Boronin. 1991. Synthesis of the phytohormone indole-3-acetic acid by rhizosphere bacteria of the genus Pseudomonas. Mikrobiologiya 60: 494-500
12 Pearce, D., M. J. Bzin, and J. M. Lynch. 1995. The rhizosphere as a biofilm, p. 207-220. In Lappin-Scott, H. M., J. .W. Costerton (Eds.), Microbial Biofilms. Cambridge University Press, Cambridge, Egland
13 Penrose, D. M. and B. R. Glick. 2001. Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can. J. Microbiol. 47: 368-372   DOI
14 Rajkumar, M., R. Nagendran, K. J. Lee, W. H. Lee, and S. Z. Kim. 2005. Influence of plant growth promoting bacteria and $Cr^{6+}$ on the growth ofIndian mustard. Chemosphere 62: 741-748
15 Salt, D. E., R. D. Smith, and J. Raskin. 1998. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 643-668   DOI
16 Sekhar, K. C., C. T. Kamala, N. S. Chary, V. Balaram, and G. Garcia. 2005. Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils. Chemosphere 58: 507-514   DOI   ScienceOn
17 Blaylock, M. J. and J. W. Huang. 2000. Phytoextraction of Metals, p. 53-70. In Raskin, I. and B.D. Ensley (eds.), Phytoremediation of Toxic Metals Using Plants to Clean-up the Environment. John Wiley & Sons, Inc., New York, U.S.A
18 Shanahan, P., D. J. O'Sullivan, P. Simpson, J. D. Glennon, and F. O'Gara, 1992. Isolation of 2,4-Diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol. 58: 353-358
19 Wallace, J. 2001. Organic Field Crop Handbook. 2nd ed. Canadian Organic Growers Inc., Ottawa, Canada
20 Patten, C. L. and B. R. Glick. 2002. Role of Pseudomonas putida Indoleacetic Acid in Development of the Host Plant Root System. Appl. Enviro. Microbiol. 68: 3795-3801   DOI
21 Rodriguez, H. and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339   DOI   ScienceOn
22 Reeves, R. D. and R. R. Brooks. 1983. European species of Thlaspi L.(Cruciferae) as indicators of nickel and zinc. J. Geochem. Explor. 18: 275-283   DOI   ScienceOn
23 Kende, H. 1989. Enzymes of ethylene biosynthesis. Plant Physiol. 91: 1-4   DOI   ScienceOn
24 Kramer, U., R. D. Smith, W. W. Wenzel, J. Raskin, and D. E. Salt. 1997. The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Physiol. Plant 115: 1641-1650
25 Xie, H., J. J. Pasternak, and B. R. Glick. 1996. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR 12-2 that overproduce indoleacetic acid. Curr. Microbiol. 32: 67-71
26 Barbieri, P., T. Zanelli, E. Galli, and G Zanetti. 1986. Wheat inoculation with Azospirillum brasilence Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid. FEMS Microbial. Lett. 36: 87-90   DOI
27 Hegde, R. S. and J. S. Fletcher. 1996. Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology. Chemosphere 32: 2471-2479   DOI   ScienceOn
28 Seong, K. Y. 1995. Factors influencing siderophore producing by plant growth promoting Rhizopseudomonas strains. J. Korean Soc. Soil Sci. Fert. 28: 287-294
29 Francesconi, K., P. Visootiviseth, W. Sridokchan, and W. Goessler. 2002. Arsenic species in an arsenic hyperaccumulating fern, Piryrogramma calomelanos: potential phytoremediator of arsenic-contaminated soil. Sci. Total Environ. 284: 27-35   DOI   ScienceOn
30 Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52 (Roots special issue): 487-511
31 Glick, B. R., C. L. Patten, G Holguin, and D. M. Penrose. 1999. Biochemical and genetic mechanisms used by plant growthpromoting bacteria. Imperial College Press, London, England
32 Ebbs, S. D. and L. V. Kochian. 1998. Phytoextraction of zinc by oat(Avena sativa), barley(Hordeum vulgare), and Indian mustard(Brassica juncea). Environ. Sci. Technol. 32: 802-806   DOI   ScienceOn
33 Kloepper, J. W., R. Lifshitz, and R. M. Zab1otowicz. 1989. Freeliving bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7: 39-44   DOI   ScienceOn
34 Ghosh, M. and S. P. Singh. 2005. A review on phytore-mediation of heavy metals and utilization of its byproducts. Appl. Ecol. Environ. Res. 3: 1-18
35 Prasad, M. N. V. and H. M. Freitas. 2003. Metal hyperaccumulation in plants - Biodiversity prospecting for phytoremediation technology. Electron. J. Biotechnol. 6: 285-321
36 Vivas. A.. B. Biro. J. M. Ruiz-Lozano. J. M. Barea. and R. Azcon, 2006. Two bacterial strains isolated from a Znpolluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62: 1523-1533   DOI   ScienceOn
37 Deikman, J. 1997. Molecular mechanisms of ethylene regulation of gene transcription. Physiol. Plant 100: 561-566   DOI   ScienceOn
38 Burd, G I., D. G Dixon, and B. R. Glick. 1998. A plant growth-promoting bacterium that decrease Nickel toxicity in seedlings. Appl. Environ. Microbiol. 64: 3663-3668
39 Kumar, P. B. A., V. Dushenkov, H. Motto, and I. Raskin. 1995. Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Technol. 29: 1232-1238   DOI   ScienceOn
40 Yang, S. F. and N. E. Hoffinan. 1984. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35: 155-89   DOI
41 Mengoni, A., E. Grassi, R. Barzanti, E. G. Biondi, C. Gonnelli, C. K. Kim, and M. Bazzicalupo. 2004. Genetic Diversity of Bacterial Communities of Serpentine Soil and of Rhizosphere of the Nickel-Hyperaccumulator Plant Alyssum bertolonii. Microb. Ecol. 48: 209-217   DOI
42 Kupper, H., F. J. Zhao, and S. P. McGrath, 1999. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 119: 305-311   DOI   ScienceOn
43 Abeles, F. B., P. W. Morgan, and Jr. M. E. Saltveit. 1992. Ethylene in plant biology. 2nd ed. Academic Press, New York, U.S.A
44 Curl, E. A. and B. Truelove. 1986. Factors affecting root exudation, p. 79-91. In Bommer, D.F.R. et al. (eds.), The Rhizosphere. Springer-Verlag, Berlin, Heidelberg, Germany
45 Glick, B. R., D. M. Karaturovic, and P. C. Newell. 1995. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can. J. Microbiol. 41: 533-536
46 Grayston, S. J., D. Vaughan, and D. Jones. 1996. Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl. Soil Ecol. 5: 29-56   DOI   ScienceOn
47 Frankenberger, W. T. Jr. and W. Brunner. 1983. Methods of detection of auxin-indole acetic acid in soil by high performance liquid chromatography. Soil Soc. Am. J. 47: 237-241
48 Pilet, P.-E. and M. Saugy. 1987. Effect on root growth of endogenous and applied IAA and ABA. Plant Physiol. 83: 33-38   DOI   ScienceOn
49 Yang, X., Y. Feng, Z. He, and P. J. Stoffella. 2005. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J. Trace Elem. Med. Biol. 18: 339-353   DOI   ScienceOn
50 Bar-Ness, E., Y. Chen, H. Hadar, H. Marschner, and V. Romheld. 1991. Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130: 231-241   DOI
51 Pandya, S., P. Iyer, V. Gaitonde, T. Parekh, and A. Desai. 1999. Chemotaxis of Rhizobium sp. S2 towards Cajanus cajan root exudates and its major components. Curr. Microbiol. 38: 205-209   DOI
52 Abou-Shanab, R. A., J. S. Angle, T. A. Delorme, R. L. Chaney, P. van Berkum, H. Moawad, K. Ghanem, and H. A. Ghozlan. 2003. Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol. 158: 219-224   DOI   ScienceOn
53 Barea, J. M. and M. E. Brown. 1974. Effects on plant growth by Azotobacter paspali related to synthesis of plant growth regulating substances. J Appl. Bacteriol. 37: 583-593
54 Tilak, K. V. B. R., N. Ranganayaki, K. K. Pal, R. De, A. K. Saxena, C. S. Nautiyal, S. Mittal, A. K. Tripathi, and B. N. Johri. 2005. Diversity of plant growth and soil health supporting bacteria. Curr. Sci. 89: 136-150
55 Kennedy, I. R., L. L. Pereg-Gerk, C. Wood, R. Deaker, K. Gilchrist, and S. Katupitiya. 1997. Biological nitrogen fixation in non-leguminous field crops: Facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil 194: 65-79   DOI   ScienceOn
56 Khan, A. G, 2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med Biol. 18: 355-364   DOI   ScienceOn
57 Yang, M. J., X. E. Yang, and V. Romheld. 2002. Growth and nutrient composition of Elsholtzia splendens Nakai under copper toxicity. J. Plant Nutr. 25: 1359-1375   DOI   ScienceOn
58 Glick, B. R. 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21: 383-393   DOI   ScienceOn
59 Kirk, G. J. D., E. E. Santos, and G. R. Findenegg. 1999. Phosphate solubilisation by organic anion excretion from rice(Oryza sativa L.) growing in anerobic soil. Plant Soil 2211: 11-18