Heating Characteristics of the Soils for the Application of Electrical Resistance Heating with Soil Vapor Extraction

전기 저항열을 이용한 유류 오염토 복원공정 적용을 위한 토양의 가열특성 연구

  • Yun Yeo-Bog (Department of Civil Engineering, Environmental Research Center, Kyunghee University) ;
  • Ko Seok-Oh (Department of Civil Engineering, Environmental Research Center, Kyunghee University) ;
  • Park Gi-Ho (Daewoo Institute of Construction Technology) ;
  • Park Min-Ho (Daewoo Institute of Construction Technology)
  • 윤여복 (경희대학교 토목공학과 환경연구센터) ;
  • 고석오 (경희대학교 토목공학과 환경연구센터) ;
  • 박기호 ((주)대우건설기술연구소 환경연구팀) ;
  • 박민호 ((주)대우건설기술연구소 환경연구팀)
  • Published : 2006.02.01

Abstract

This study was performed to evaluate the heating characteristics of soils for the application of electrical resistance heating process combined with soil vapor extraction. Laboratory tests were conducted to find out optimum heating conditions by the adjustment of electrical supply and electrode. Results show that fine soil particles are more efficient for electrical heating. As water content of soil increases, more efficient electrical heating is observed. However, as the soil is saturated with water above the soil porosity, decrease in the heating efficiency is observed. The higher the voltage, is and the shorter the distance between the electrodes is, the better the heating efficiency is. The soil contaminated by fuel is also more efficient than non-contaminated soil in electrical resistance heating. From the relationship between the intial electrical current and the conductivity obtained in this study, soil temperature by electrical heating can be estimated.

본 연구에서는 토양의 전기가열 특성을 실험을 통해 규명함으로서, 전기저항열을 이용한 토양증기추출법을 실제 현장에 적용 시 토양가열 효율을 증가시키는 방안을 도출하기 위하여, 반응조를 이용한 토양 종류별 자체 특성에 따른 가열 특성과 외부에서의 전기적 특성의 조절을 통한 가열 특성을 살펴보았다 토양의 업자가 작을수록, 토양 내 이 온이 풍부할수록 전기가열 효율이 증가되었으며, 토양이 물로 포화된 경우에도 전기 가열 효율이 증가하였으나 공극률 이상으로 수분이 있는 경우는 오히려 효율이 떨어졌다. 전압이 증가할수록, 전극 사이가 짧아질수록, 유류 오염된 토양일수록 효율은 증가되었다 본 연구에서는 초기 전류와 전기전도도의 정량적 상관관계를 도출함으로써 직접적인 전기가열 실험 없이 전기전도도로 반응조 내 토양이 $100^{\circ}C$ 온도 상승의 가능성을 예측할 수 있게 됐다.

Keywords

References

  1. 배재근, 오종민, 2002, 환경인을 위한 토양오염 측정분석, 신광문화사, 서울, p. 190-191
  2. 윤길림, 이용길, 2000, 오염토양의 전기 비저항치 변화 연구, 한국지하수토양환경학회 춘계학술발표회, 한국지하수토양환경학회, p. 84-89
  3. Beyke, Gregory., and Fleming, David., 2005, In Situ Thermal Remediation of DNAPL and LNAPL Using Electrical Resistance Heating, Wiley Periodicals, Inc
  4. Beyke, Gregory., 2002, Enhanced Removal of Separate Phase Viscous Fuel by Electrical Resistance Heating, 9th Annual International Petroleum Environmental Conference, Thermal Remediation Services, Inc., Marietta, GA
  5. Fleming, David., 2003, Electrical Resistance Heating for Rapid Remediation of DNAPL, 29th Environmental and Energy Symposium & Exhibition, Thermal Remediation Service, Inc
  6. Heron, G, Van Zutphen, M., Christensen, T. H., and Enfield, C. G, 1998, Soil Heating for Enhanced Remediation of Chlorinated Solvents: A Laboratory Study on Resistive Heating and Vapor Extraction in a Silty, Low-Permeable Soil Contaminated with Trichloroethylene, Environ Sci Techonol, 32(8), 1474-1481 https://doi.org/10.1021/es970563j
  7. Ivory, Thomas. M., and Roote, Diane. S., 2003, Technology Status Report: In Situ Thermal-Enhanced Remediation Technology, Concurrent Technologies Corporation Pittsburgh, EPA
  8. Poppendieck, D. G, Loehr, R. C., and Webster, M. T., 1999, Predicting hydrocarbon removal from thermally enhanced soil vapor extraction systems: I. laboratory studies, J Hazard Mater, 67(1), 81-91
  9. Sawyer, Clair N., McCarty, Perry L., and Parkin, Gene F., 1994, Chemistry for Environmental Engineering, 동화기술, 서울, p. 95-100
  10. Snoeyink, Vernon L., and Jenkins, David., 1980, Water Chemistry, John Wiley & Sons, Inc. p. 76-77