• Title/Summary/Keyword: 오염원 기원 추적

Search Result 11, Processing Time 0.023 seconds

Estimation of Pollutant Sources in Dangjin Coal-Fired Power Plant Using Carbon Isotopes (탄소 안정동위원소를 이용한 석탄화력발전소 인근 오염원 기원 추정 : 당진시를 중심으로)

  • Yoon, Soohyang;Cho, Bong-Yeon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.3
    • /
    • pp.567-575
    • /
    • 2021
  • Residents in Dangjin, South Chungcheong Province, in which large-scale emissions facilities such as coal-fired power plants and steel mills are concentrated, are very much concerned about their health despite the local government's aggressive efforts to improve air quality and reduce greenhouse gases. To understand the impact of coal-fired power plants and external factors on local air pollution, the origins of local pollutants were investigated using stable carbon isotopes that are generally used as tracers of the provenance of fine or ultrafine dust. The origins of the pollutants were analyzed with the data library, built using the seasonally measured data for the two separate locations selected considering the distance from the coal-fired power plant and the analysis of previous studies, and with the back trajectory analysis. As a result of analyzing stable isotope ratios, the tendency of high concentration was found in the order of winter > spring > fall > summer. According to the data matching with the library, the mobile pollutants and open-air incineration had a relatively higher impact on the local air pollution. It is believed that this study, as a pilot study, should focus on securing the reliability of the study results through continuous monitoring and data accumulation.

Analytical Methodology of Stable Isotopes Ratios: Sample Pretreatment, Analysis and Application (안정동위원소비 분석 기법의 이해: 시료의 전처리, 분석 및 자료의 해석과 적용)

  • Kim, Min-Seob;Hwang, Jong-Yeon;Kwon, Oh-Sang;Lee, Won-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.471-487
    • /
    • 2013
  • This review paper was written to provide background information as well as future application for aquatic ecologists interested in using stable isotope. Stable isotope techniques has proved to be an extremely useful to elucidate a lot of environmental and ecological problems. Stable isotopes have been used as possible tracers to identify sources, to quantify relative inputs in a system. When utilized carefully, stable isotope tools provides apparent advantages for the scientists to find out the processes of material cycles in various environments and energy flows in natural ecosystems.

Introduction of Denitrification Method for Nitrogen and Oxygen Stable Isotopes (δ15N-NO3 and δ18O-NO3) in Nitrate and Case Study for Tracing Nitrogen Source (탈질미생물을 이용한 질산성 질소의 산소 및 질소 동위원소 분석법 소개)

  • Lim, Bo-La;Kim, Min-Seob;Yoon, Suk-Hee;Park, Jaeseon;Park, Hyunwoo;Chung, Hyen-Mi;Choi, Jong-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.459-469
    • /
    • 2017
  • Nitrogen (N) loading from domestic, agricultural and industrial sources can lead to excessive growth of macrophytes or phytoplankton in aquatic environment. Many studies have used stable isotope ratios to identify anthropogenic nitrogen in aquatic systems as a useful method for studying nitrogen cycle. In this study to evaluate the precision and accuracy of denitrification bacteria method (Pseudomonas chlororaphis ssp. Aureofaciens ($ATCC^{(R)}$ 13985)), three reference (IAEA-NO-3 (Potassium nitrate $KNO_3$), USGS34 (Potassium nitrate $KNO_3$), USGS35 (Sodium nitrate $KNO_3$)) were analyzed 5 times repeatedly. Measured the ${\delta}^{15}N-NO_3$ and ${\delta}^{18}O-NO_3$ values of IAEA-NO-3, USGS 34 and USGS35 were ${\delta}^{15}N:4.7{\pm}0.1$${\delta}^{18}O:25.6{\pm}0.5$‰, ${\delta}^{15}N:-1.8{\pm}0.1$${\delta}^{18}O:-27.8{\pm}0.4$‰, and ${\delta}^{15}N:2.7{\pm}0.2$${\delta}^{18}O:57.5{\pm}0.7$‰, respectively, which are within recommended values of analytical uncertainties. Also, we investigated isotope values of potential nitrogen source (soil, synthetic fertilizer and organic-animal manures) and temporal patterns of ${\delta}^{15}N-NO_3$ and ${\delta}^{18}O-NO_3$ values in river samples during from May to December. ${\delta}^{15}N-NO_3$ and ${\delta}^{18}O-NO_3$ values are enriched in December suggesting that organic-animal manures should be one of the main N sources in those areas. The current study clarifies the reliability of denitrification bacteria method and the usefulness of stable isotopic techniques to trace the anthropogenic nitrogen source in freshwater ecosystem.

Applications of Radiocarbon Isotope Ratios in Environmental Sciences in South Korea (방사성탄소동위원소비 분석을 적용한 우리나라 환경과학 연구)

  • Neung-Hwan Oh;Ji-Yeon Cha
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.281-302
    • /
    • 2023
  • Carbon is not only an essential element for life but also a key player in climate change. The radiocarbon (14C) analysis using accelerator mass spectrometry (AMS) is a powerful tool not only to understand the carbon cycle but also to track pollutants derived from fossil carbon, which have a distinct radiocarbon isotope ratio (Δ14C). Many studies have reported Δ14C of carbon compounds in streams, rivers, rain, snow, throughfall, fine particulate matter (PM2.5), and wastewater treatment plant effluents in South Korea, which are reviewed in this manuscript. In summary, (1) stream and river carbon in South Korea are largely derived from the chemical weathering of soils and rocks, and organic compounds in plants and soils, strongly influenced by precipitation, wastewater treatment effluents, agricultural land use, soil water, and groundwater. (2) Unprecedentedly high Δ14C of precipitation during winter has been reported, which can directly and indirectly influence stream and river carbon. Although we cannot exclude the possibility of local contamination sources of high Δ14C, the results suggest that stream dissolved organic carbon could be older than previously thought, warranting future studies. (3) The 14C analysis has also been applied to quantify the sources of forest throughfall and PM2.5, providing new insights. The 14C data on a variety of ecosystems will be valuable not only to track the pollutants derived from fossil carbon but also to improve our understanding of climate change and provide solutions.

Lead isotope measurement of geological reference materials using thermal ionization mass spectrometry (열이온화질량분석기를 이용한 암석표준시료에 대한 납 동위원소 분석)

  • Lee, Hyo Min;Jo, Hui Je;Kim, Taehoon
    • Analytical Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.245-251
    • /
    • 2020
  • Lead (Pb) has been shown to be a useful tracer of contamination sources and geochemical processes such as age dating and crustal evolution. These studies require a chromatographic technique for Pb separation from geological samples. This paper presents a comparison study on the effect of eluent concentration between 6M HCl and 8M HCl on the separation of Pb from Pb resin. The results showed that the separation of Pb using 6M HCl as the eluent was not effective compared to the separation using 8M HCl. To verify this method, we measured the Pb isotopic compositions of the Pb isotopic standard (NIST NBS981) and geological reference materials (BCR-2, GSP-2, and JG-1a) using a thermal ionization mass spectrometer (TIMS). The results correspond well with the reported values within the error range, implying that this method can be useful.

Introduction of Kjeldahl Digestion Method for Nitrogen Stable Isotope Analysis (δ15N-NO3 and δ15NNH4) and Case Study for Tracing Nitrogen Source (Kjeldahl 증류법을 활용한 질산성-질소 및 암모니아성-질소 안정동위원소비 분석 및 질소오염원 추적 사례 연구)

  • Kim, Min-Seob;Park, Tae-Jin;Yoon, Suk-Hee;Lim, Bo-La;Shin, Kyung-Hoon;Kwon, Oh-Sang;Lee, Won-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Nitrogen (N) loading from domestic, agricultural and industrial sources can lead to excessive growth of macrophytes or phytoplankton in aquatic environment. Many studies have used nitrogen stable isotope ratios to identify anthropogenic nitrogen in aquatic systems as a useful method for studying nitrogen cycle. In this study to evaluate the precision and accuracy of Kjeldahl processes, two reference materials (IAEA-NO-3, N-1) were analyzed repeatedly. Measured the ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values of IAEA-NO-3 and IAEA-N-1 were $4.7{\pm}0.2$‰ and $0.4{\pm}0.3$‰, respectively, which are within recommended values of analytical uncertainties. Also, we investigated spatial patterns of ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ in effluent plumes from a waste water treatment plant in Han River, Korea. ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values are enriched at downstream areas of water treatment plant suggesting that dissolved nitrogen in effluent plumes should be one of the main N sources in those areas. The current study clarifies the reliability of Kjeldahl analytical method and the usefulness of stable isotopic techniques to trace the contamination source of dissolved nitrogen such as nitrate and ammonia.

Geochemical Contamination Assessment and Distribution Property Investigation of Heavy Metals, Arsenic, and Antimony Vicinity of Abandoned Mine (폐광산 인근지역에서 중금속, 비소, 안티모니의 지구화학적 오염도 평가 및 분산 특성 조사)

  • Han-Gyum Kim;Bum-Jun Kim;Myoung-Soo Ko
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.717-726
    • /
    • 2022
  • This study was conducted to assess the geochemical contamination degree of As, Cd, Cu, Pb, Sb, and Zn in the soil and water samples from an abandoned gold mine. Enrichment Factor (EF), Geoaccumulation Index (Igeo), and Pollution Load Index (PLI) were carried out to assess the geochemical contamination degree of the soil samples. Variations of sulfate and heavy metals concentration in water samples were determined to identify the geochemical distribution with respect to the distance from the mine tailing dam. Geochemical pollution indices indicated significant contaminated with As, Cd, Pb, and Zn in the soil samples that areas close to the mine tailing dam, while, Sb showed similar indices in all soil samples. These results indicated that the As, Cd, Pb, and Zn dispersion has occurred via anthropogenic sources, such as mining activities. In terms of water samples, anomalies in the concentrations of As, Cd, Zn, and SO42- was determined at specific area, in addition, the concentrations of the elements gradually decreased with distance. This result implies the heavy metals distribution in water has carried out by the weathering of sulfide minerals in the mine tailing and soil. The study area has been conducted the remediation of contaminated soil in the past, however, the geochemical dispersion of heavy metals was supposed to be occurred from the potential contamination source. Therefore, continuous monitoring of the soil and water is necessary after the completion of remediation.

Assessment of Contamination and Sources Identification of Heavy Metals in Stream Water and Sediments around Industrial Complex (산업단지 유역 하천수와 퇴적물 내 중금속 오염도 평가 및 기원 추적 연구)

  • Jeong, Hyeryeong;Lee, Jihyun;Choi, Jin-Young;Kim, Kyung-Tae;Kim, Eun-Soo;Ra, Kongtae
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.179-191
    • /
    • 2019
  • Heavy metals in stream water and sediments around industrial complex were studied in order to assess the contamination and to identify the potential source of metals. High variability has been observed for both dissolved and particulate phases in stream water with coefficient of variation (CV) ranging from 1.3 to 2.8. The highest metal concentrations in both phases were observed in Gunja for Ni and Cu, in Jungwang for Zn and Pb and in Shiheung for Cd, respectively. These results indicate that the different metal sources could be existing. The concentrations of the heavy metals in sediments decreased in the order of Cu>Zn>Pb>Cr>Ni>As>Cd>Hg, with mean of 2,549, 1,742, 808, 539, 163, 17.1, 5.8, $0.07mg\;kg^{-1}$, respectively. Mean of metal concentrations(except for As) in sediments showed the highest values at Shiheung stream comparing with other streams. In sediments, the percent exceedance of class II grade that metal may potentially harmful impact on benthic organism for Cr, Ni, Cu, Zn, Cd, Pb was about 57%, 62%, 84%, 60%, 68%, 81% for all stream sediments, respectively. Sediments were classified as heavily to extremely polluted for Cu and Cd, heavily polluted for Zn and Pb, based on the calculation of Igeo value. About 59% and 35% of sediments were in the categories of "poor" and "very poor" pollution status for heavy metals. Given the high metal concentrations, industrial wastes and effluents, having high concentrations of most metals originated from the manufacture and use of metal products in this region, might be discharged into the stream through sewer outlet. The streams receive significant amounts of industrial waste from the industrial facilities which is characterized by light industrial complexes of approximately 17,000 facilities. Thus, the transport of metal loads through streams is an important pathway for metal pollution in Shihwa Lake.

Monte-Carlo Simulations of Non-ergodic Solute Transport from Line Sources in Isotropic Mildly Heterogeneous Aquifers (불균질 등방 대수층 내 선형오염원으로부터 기원된 비에르고딕 용질 이동에 관한 몬테카를로 시뮬레이션)

  • Seo Byong-min
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.20-31
    • /
    • 2005
  • Three dimensional Monte-Carlo simulations of non-ergodic transport of a lion-reactive solute plume by steady-state groundwater flow under a uniform mean velocity in isotropic heterogeneous aquifers were conducted. The log-normally distributed hydraulic conductivity, K(x), is modeled as a random field. Significant efforts are made to reduce tile simulation uncertainties. Ensemble averages of the second spatial moments of the plume and plume centroid variances were simulated with 1600 Monte Carlo runs for three variances of log K, ${\sigma}_Y^2=0.09,\;0.23$, and 0.46, and three dimensionless lengths of line plume sources normal to the mean velocity. The simulated second spatial moment and the plume centroid variance in longitudinal direction fit well to the first order theoretical results while the simulated transverse moments are generally larger than the first order results. The first order theoretical results significantly underestimated the simulated dimensionless transverse moments for the aquifers of large ${\sigma}_Y^2$ and large dimensionless time. The ergodic condition for the second spatial moments is far from reaching in all cases simulated, and transport In transverse directions may reach ergodic condition much slower than that in longitudinal direction. The evolution of the contaminant transported in a heterogeneous aquifer is not affected by the shape of the initial plume but affected mainly by the degree of the heterogeneity and the size of the initial plume.

Characterization of contribution of vehicle emissions to ambient NO2 using stable isotopes (안정동위원소를 이용한 이동오염원에 의한 대기 중 NO2의 거동특성 연구)

  • Park, Kwang-Su;Kim, Hyuk;Yu, Suk-Min;Noh, Seam;Park, Yu-Mi;Seok, Kwang-Seol;Kim, Min-Seob;Yoon, Suk Hee;Kim, Young-Hee
    • Analytical Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.17-23
    • /
    • 2019
  • Sources of NOx are both anthropogenic (e.g. fossil fuel combustion, vehicles, and other industrial processes) and natural (e.g. lightning, biogenic soil processes, and wildfires). The nitrogen stable isotope ratio of NOx has been proposed as an indicator for NOx source partitioning, which would help identify the contributions of various NOx sources. In this study, the ${\delta}^{15}N-NO_2$ values of vehicle emissions were measured in an urban region, to understand the sources and processes that influence the isotopic composition of NOx emissions. The Ogawa passive air sampler was used to determine the isotopic composition of $NO_2$(g). In urban tunnels, the observed $NO_2$ concentration and ${\delta}^{15}N-NO_2$ values averaged $3809{\pm}2656ppbv$ and $7.7{\pm}1.8$‰, respectively. The observed ${\delta}^{15}N-NO_2$ values are associated with slight regional variations in the vehicular $NO_2$ source. Both $NO_2$ concentration and ${\delta}^{15}N-NO_2$ values were significantly higher near the expressway ($965{\pm}125ppbv$ and $5.9{\pm}1.4$‰) than at 1.1 km from the expressway ($372{\pm}96ppbv$ and $-11.5{\pm}2.9$‰), indicating a high proportion of vehicle emissions. Ambient ${\delta}^{15}N-NO_2$ values were used in a binary mixing model to estimate the percentage of the ${\delta}^{15}N-NO_2$ value contributed by vehicular NOx emissions. The calculated percentage of the ${\delta}^{15}N-NO_2$ contribution by vehicles was significantly higher close to the highway, as observed for the $NO_2$ concentration and ${\delta}^{15}N-NO_2$.