Browse > Article
http://dx.doi.org/10.5806/AST.2020.33.6.245

Lead isotope measurement of geological reference materials using thermal ionization mass spectrometry  

Lee, Hyo Min (Geoscience Platform Division, Korea Institute of Geoscience and Mineral Resources)
Jo, Hui Je (Geoscience Platform Division, Korea Institute of Geoscience and Mineral Resources)
Kim, Taehoon (Geoscience Platform Division, Korea Institute of Geoscience and Mineral Resources)
Publication Information
Analytical Science and Technology / v.33, no.6, 2020 , pp. 245-251 More about this Journal
Abstract
Lead (Pb) has been shown to be a useful tracer of contamination sources and geochemical processes such as age dating and crustal evolution. These studies require a chromatographic technique for Pb separation from geological samples. This paper presents a comparison study on the effect of eluent concentration between 6M HCl and 8M HCl on the separation of Pb from Pb resin. The results showed that the separation of Pb using 6M HCl as the eluent was not effective compared to the separation using 8M HCl. To verify this method, we measured the Pb isotopic compositions of the Pb isotopic standard (NIST NBS981) and geological reference materials (BCR-2, GSP-2, and JG-1a) using a thermal ionization mass spectrometer (TIMS). The results correspond well with the reported values within the error range, implying that this method can be useful.
Keywords
Pb isotope; TIMS; Pb separation; geological reference material;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 D. Weis, B. Kieffer, C. Maerschalk, J. Barling, J. de Jong, G. Williams, N. Mattielli, J. S. Scoates, R. M. Friedman and J. B. Mahoney, Geochem. Geophys. Geosyst., 7, 8 (2006). https://doi.org/10.1029/2006GC001283.   DOI
2 M. Tanimizu and T. Ishikawa, Geochem. J., 40, 121-133 (2006).   DOI
3 C. Cloquet, J. Carignan, G. Libourel, T. Sterckeman and E. Perdrix, Envi. Sci. Tech., 40(8), 2525-2530 (2006).   DOI
4 A. T. Townsend and I. Snape, J. Anal. Atomic Spectrometry, 17, 922-928 (2002).   DOI
5 J-J. Park, K-J. Kim, S-M. Yoo, E-H. Kim, K-S. Seok, H.S. Shin and Y-H. Kim, Anal., Sci. Technol., 25(6), 429-434 (2012).   DOI
6 H-M. Lee, S-G. Lee and T. Tanaka, J. Petrol. Soc. Korea, 24(4), 365-371 (2015).   DOI
7 A. Simonettic, C. Gariepy and J. Carignan, Geochim. Cosmochim. Acta, 64, 5-20 (2000).   DOI
8 J-H. Kang, H. Hwang, C. Han, S. D. Hur, S-J. Kim and S. Hong, Chemosphere, 187, 294-301 (2017).   DOI
9 E. W. Lee, S. J. Kim, W. R. Han, M. S. Han and J. J. Hwang, J. Conservation Sci. Korea, 30(4), 345-351 (2014).   DOI
10 H. B. Choi, J. S. Ryu, S. Park and J. Lee, J. Geol. Soc. Korea, 54(3), 311-318 (2018).   DOI
11 I. Raczek, B. Stoll, A. W. Hofmann and K. P. Jochum, Geostand. Newsl., 25(2), 77-86 (2001).   DOI
12 A. Ando, H. Kamioka, S. Terashima and S. Itoh, Geochem. J., 23, 143-148 (1989).   DOI
13 T. Yokoyama, A. Makishima and E. Nakamura, Chem. Geol., 157, 175-187 (2010).   DOI
14 E. P. Horwitz, M. L. Dietz, S. Rhoads, C. Felinto, N. H. Gale and J. Houghton, Anal. Chim. Acta, 292(3), 263-273 (1994).   DOI
15 C. Deniel and C. Pin, Anal. Chim. Acta, 426, 95-103 (2001).   DOI
16 H. D. Holland and K. K. Turekian, 'Treatise of Geochemistry', 1st Ed., Elsevier, 2004.
17 W. Todt, R. A. Cliff, A. Hanser and A. W. Hofmann, Earth Processes: Reading the Isotopic Code, 429-437 (1996).
18 H. Yuan, W. Yuan, C. Cheng, P. Liang, X. Liu, M. Dai, Z. Bao, C. Zong, K. Chen and S. Lai, Solid Earth Sci., 1, 74-78 (2016).   DOI