• Title/Summary/Keyword: 오염된 지반

Search Result 410, Processing Time 0.03 seconds

Numerical Analysis of Effects of the Physical Properties of Soil and Contaminant Materials on In-situ Soil Remediation Using Vertical Drain (토양 및 오염물질의 물성치가 연직배수재에 의한 현장오염정화에 미치는 영향에 대한 수치해석적 연구)

  • Lee, Haeng-Woo;Chang, Pyoung-Wuck
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The properties of contaminated soil, contaminants and elapsed time are important considering factors to in-situ soil remediation. Gabr et. al. (1996) derived the solution equation of contaminant concentration ratio as initial one ($C/C_0$) with time and spatial changes in contaminated area which are embedded with vertical drains. The contaminant concentration ratio ($C/C_0$) is analyzed with time and spatial changes as varying the effective diameter, porosity, shape factor, density of contaminated soil, temperature in ground, unit weight and viscosity of contaminants by using FLUSH1 model modified from FLUSH. Results from numerical analysis indicate that the most important factor to the in-situ soil remediation in vertical drain system is the effective diameter of contaminated soil. It also shows that the next important factors are the viscosity of contaminants, porosity of soil, shape of soil, temperature in ground, unit weight of contaminants and density of soil, in order. However, the others except the effective diameter of contaminated soil are insignificant to the soil remediation.

  • PDF

Geotechnical Characteristics of Crude Oil-Contaminated Sandy Ground (원유로 오염된 지반의 역학적 특성)

  • 신은철;이재범
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.37-44
    • /
    • 1997
  • In this paper, the effects of crude oil contamination on the geotechnical properties of sand such as compaction characteristics, shear strength, permeability, and bearing capacity are presented. The test results indicate that the compaction characteristics are somewhat influenced by oil contamination. The angle of internal friction of sand based on total stress analysis decreases due to the presence of oil within the pore spaces in Band. The bearing capacity of sand is significantly influenced by oil contamination.

  • PDF

The Application of Innovative Strategies for Addressing Petroleum Impacted Groundwater

  • Ricciardelli, Albert J.;Connolly, Julianna B.
    • Geotechnical Engineering
    • /
    • v.23 no.10
    • /
    • pp.10-16
    • /
    • 2007
  • 유류에 의해 오염된 지하수와 지반의 처리시 오염 정도와 향후 부지사용 목적에 따라 적절한 처리 기준을 정하는 것이 선행되어야 한다. 미 메사추세츠주에서는 오염물의 음용수에 대한 노출 정도에 따라 지하수의 오염처리 기준을 세분하는데, 그 중 가장 엄격한 것이 GW-1 기준이고 반대로 가장 관대한 것은 UCL 기준이다. 본 컬럼은 이 두 기준을 각각 적용한 사례연구를 통해 유류오염 지하수 및 지반 처리 기술을 소개하고 있다.

  • PDF

A Study on the Calculation of Lateral Flow Pressure of Polluted Soils with Various Water Contents (함수량이 다른 오염지반의 측방유동압 산정에 관한 연구)

  • 안종필;박경호
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.75-88
    • /
    • 2002
  • When unsymmetrical surcharge is worked on polluted soft soils, large plastic shearing deformation such as settlements, lateral displacement, upheavals and shearing failure occured in the soils and they have often done considerable damages to the soils and structures. Accordingly, this study conducts laboratory pilots test to investigate the determination method of lateral flow pressure of polluted soft soils by comparing it to existing equations. The model test is performed that a model stock device is made and polluted soils are filled in a container which fires the soils. Then the displacement is observed as surcharge load is increased by regular intervals at untrained condition. The result shows that test the lateral flow pressure is adequately calculated by the equation (P=K$_{0}$YH) and the maximum value of lateral flow pressure Is found near 0.3H of layer thickness(H) and is higher to ground surface than synthesis pattern, Poulos distribution pattern and soft clay soils(CL, CH) which is not polluted.

A Study on the Determination of Bearing Capacity of Soft Silty Ground and Polluted Silty Ground with Wastewater and Factory Waste Oil (연약한 실트지반과 생활오폐수와 공장폐유로 오염된 실트지반의 지지력 결정에 관한 연구)

  • Ahn, Jong-Pil;Park, Sang-Bum
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.5-13
    • /
    • 2008
  • Laboratory model test with soft silty ground (ML) and polluted silty ground with wastewater and factory waste oil ($ML_p$) was conducted and the applicability of changes of bearing capacity from the increase of pollutants was compared and analyzed with existing findings. As silty ground polluted with wastewater and factory waste oil had increased contents of pollutants, plasticization of ground was fostered compared to soft silt ground due to the influence of pollutants, and characteristics of ground strength decreased. Critical surcharge value of soft silty ground $q_{cr}=4.14c_u$, ultimate bearing capacity value $q_{ult}=9.53c_u$, critical surcharge value of silty ground polluted with wastewater and factory waste oil $q_{cr}=1.78c_u$ and ultimate bearing capacity value $q_{ult}=4.39c_u$. Critical surcharge and ultimate bearing capacity of silty ground polluted with wastewater and factory waste oil were less than those of soft silty ground. It meant that shearing resistance due to the increase of pollutants decreased and rather a smaller value was obtained.

Analysis of Influence Factors for Remediation of Contaminated Soils Using Prefabricated Vertical Drains (연직배수재를 이용한 오염지반 복원의 영향인자 분석)

  • Park, Jeongjun;Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.39-46
    • /
    • 2008
  • Due to the growth in industrialization, potential hazards in subsurface environments are becoming increasingly significant. The extraction of the contaminant from the soil and movement of the water are restricted due to the low permeability and adsorption characteristics of the reclaimed soils. There are a number of approaches to in-situ remediation that are used in contaminated sites for removing contaminants. These include soil flushing, dual phase extraction, and soil vapor extraction. Among these techniques, soil flushing was the focus of the investigation in this paper. Incorporated technique with PVDs has been used for dewatering from fine-grained soils for the purpose of ground improvement by means of prefabricated vertical drain systems. The laboratory model tests were performed by using the flushing tracer solutions for silty soils and recorded the tracer concentration changes with the elapsed time and flow rates. The modeling was intended to predict the effectiveness and time dependence of the remediation process. Modeling has been performed on the extraction, considering tracer concentration and laboratory model test characteristics. The computer model used herein are SEEP/W and CTRAN/W, this 2-D finite element program allows for modeling to determine hydraulic head and pore water pressure distribution, efficiency of remediation for the subsurface environment. It is concluded that the coefficient of permeability of contaminated soil is related with vertical velocity and extracted flow rate. The vertical velocity and extracted flow rate have an effect on dispersivity and finally are played an important role in-situ soil remediation.

  • PDF

Geotechnical Characteristics of Crude Oil-Contaminated Sands (원유(Crude-Oil)로 오염된 사질토외 공학적 특성)

  • Eun Chul Shin;Seung Seo Hong
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.91-97
    • /
    • 1997
  • The result of an investigation conducted to study the effect of crude oil contamination on the geotechnical properties of sand is presented. The effect of the degree of oil contamination on compaction charateristics, shear strength, and one-dimensional compression charateristics has been investigated. The test results indicate that the compaction charateristics are somewhat influenced by oil contamination The angle friction of sand (based on total stress basis) decreases due to the presence of oil within the pore spaces in sand. The compression charateristics of sand are significantly influenced by oil contamination. The details of the tests conducted and the results are presented in the paper.

  • PDF

A Study on Applicability Evaluation of digital Photogrammetry for Settlement Measurement of Soil Contaminated with Heavy Metals (중금속으로 오염된 지반의 침하계측을 위한 수치사진측량의 적용성 평가)

  • Han, Jung-Geun;Park, Jeong-Jun;You, Seung-Kyong;Yun, Jung-Mann;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.85-93
    • /
    • 2020
  • This study describes the results of laboratory model test on settlement of soil contaminated with heavy metals, in order to evaluate the applicability of VMS to the measurement of gound settlements generated during the purification of contaminated soil. The measurement results for settlement of contaminated soil were compared using a 3D-Visual Monitoring System (VMS) based on digital photogrammetry and a total station. The test result showed that the settlement of the soil contaminated with heavy metals occurred a lot in the experimental condition in which the hydrophilic filter was applied. The minimum and maximum error ranges of VMS were calculated as ±0.36mm and ±0.87mm, respectively, and the error of VMS was satisfied in all experimental conditions. The average error rate of VMS was lower in the hydrophilic filter condition than in the hydrophobic filter condition. Therefore, it was evaluated that VMS can be applied to measure the settlement of contaminated soil.

Applicability of Resistivity/Capacitance Measurement on CPT Module for Investigation of Subsurface Contamination (지반 오염도 조사를 위한 전기비저항/정전용량 측정콘의 적용성 평가)

  • Oh, Myoung-Hak;Kim, Yong-Sung;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.45-54
    • /
    • 2006
  • Resistivity cone penetrometer test (RCPT) can be employed at a relatively low cost for in-situ delineation of subsurface contamination. While the resistivity measurement has a potential to investigate the subsurface contamination, resistivity measurements alone will lead to some degree of ambiguity in the results. In this study, capacitance measurement was incorporated into the RCPT to overcome the ambiguity inherent in electrical resistivity measurements. This study is focused on verifying the applicability of resistivity and capacitance measurements of CPT module to provide information on subsurface contaminated by heavy metal and petroleum hydrocarbon. Laboratory model tests were performed to evaluate the sensitivity of the measured resistivity and relative capacitance on the water content and different types of contaminants. Test results show that simultaneous measurement of electrical resistivity and capacitance can give more reliable information on subsurface contamination. Electrical measurements of the CPT module showed high applicability to be used in detecting saturated soils contaminated by heavy metal and diesel plume floating above the groundwater table.