• Title/Summary/Keyword: 오리피스

Search Result 445, Processing Time 0.028 seconds

The Study on the Production Method of Stepwise Dilution Gas for Odor Analysis with Orifice Tubes (오리피스 튜브에 의한 단계별 냄새 분석용 희석가스의 제조방법에 관한 연구)

  • Kim, Han-Soo;Lee, Seok-Jun;Kim, Sun-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.137-143
    • /
    • 2013
  • This study is to develop the production method of stepwise dilution gas for the evaluation of complex odor concentration by orifice tube. The basic orifice tube for 10 and 30 times of dilution sample was made at first, and with the combination of the basic orifice tubes we can continuously manufacture the stepwise dilution sample gas for air dilution sensory test ; 10, 30, 100, 300, 1,000, 3,000 times etc. The hole size of orifice tube was 0.84 mm for 10 times of dilution sample, and was 0.34 mm for 30 times. Dilution sample gas made with the basic orifice tube have an excellent reproducibility, 2%RSD. In addition, over 90% of correlation was shown between the sample made by the orifice tube and the sample by the syringe dilution method. Because there was no concentration drift of dilution gas with changes of connected pump flow, the basic orifice tube could be mounted directly with a vacuum suction box, and could be used simply as a tool for the evaluation of odor, especially on site.

A Combination Study on the Elevation Motion Friction Compensation Parameters in Gas Spring (1) (가스 스프링 Elevation 동작 마찰력 보상 변수 조합 연구 (1))

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.657-666
    • /
    • 2017
  • In this study, factor analysis was performed to reduce the friction in the elevation motion of a stand for a 50-inchtelevision. Pipe type cross-section control was used for accurate positioning control of the piston rod. The pipe type was also compared with a labyrinth-type crosssection for the orifice. The frictional force was then reduced using gas seal lip technology. Specifications were chosen, and a volume compensation experiment was carried out using an apparatus for compensating the volume of the cylinder, which is compressed by the volume of the piston rod. Based on CAE and experimental considerations, the labyrinth-type orifice is preferred for reducing friction. For the gas seal lip technology, outer and inner diameters of ${\Phi}20$ and ${\Phi}8$ for the hollow rod were more appropriate when assuming the weight of a 50-inch television to be 30kgf. The third is that the result of total consideration in stability problem and performance of volume compensation for specification decision and volume compensation experiment is determined the final speculation of hollow rod ?8x?4 and riveting system. The last is that the labyrinth orifice is not founded that of the ${\O}0.4{\sim}0.6$ orifice both tests on 300 mm intervals.

Damping Characteristic of Helmholtz Resonator according to Its Geometry and Sound Pressure Level (헬름홀쯔 공명기의 기하학적 형상과 가진 음압에 따른 감쇠 특성)

  • Song, Jae-Kang;Kim, Ki-Woo;Chae, Byoung-Chan;Ko, Young-Sung;Kim, Sun-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.966-972
    • /
    • 2010
  • Damping characteristics of a Helmholtz resonator to passively control the combustion instability were investigated by linear acoustic analysis and atmospheric acoustic tests. Its orifice length and diameter were selected as the design parameters and supplied SPL(sound pressure level) effect on damping characteristics were investigated. Damping capacity is improved by decreasing the orifice length as well as by increasing the orifice diameter. Also, the results showed that the damping capacity of the resonator decreased nonlinearly about above 110 dB and instabilities in the nonlinear region were more effectively suppressed by increasing the orifice diameter.

A Study on Parameters of SUAV Landing Gear Orifice (SUAV 착륙장치 오리피스의 파라미터 연구)

  • Han, Jae-Do;Kang, Yeon-Sik;Ahn, Oh-Sung;Lee, Young-Sin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.99-104
    • /
    • 2009
  • In this paper, the drop characteristic of the small aircraft landing gear of SUAV has been analyzed and performed on orifice optimal design for shock absorption efficiency. The SUAV landing gear was simple oleo pneumatic type without metering pin. The landing gear was modelled by MSC ADAMS software. Drop test evaluation was conducted to confirm the analysis model. As a result of correlation between analysis and test results, it was verified that these results were coincided with very well. After confidence review of analysis model through the correlation between test and analysis results, design parametric study was performed by using confirmed analysis model. Optimal orifice size with best efficiency have been decided in this study.

Flow instability of cryogenic fluid in the downstream of orifice (극저온 유체의 공동 발생에 의한 오리피스 후류의 유동 불안정)

  • Lee, Se-Young;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.695-702
    • /
    • 2008
  • Flow instability in the rocket turbo pump systems can be caused by various elements such as valve, orifice and venturi and etc. The formation of cavitation specially in the propellant feeding system can trigger the mass flow and pressure oscillation due to cyclic formation and depletion of cavitations. If the cryogenic propellant are used, which is very sensitive to temperature variation, the change of propellant properties due to thermodynamic effect should be accounted for in the flow analysis. This study focuses on the formation of cryogenic cavitation adopting MUSHY IDM model suggested by Shyy and coworkers. Also, the flow instability is investigated with developed numerical code in the downstream of orifice flow. To this end, three different orifices are selected and investigated by the numerical calculation.

Multiphase Simulation of a Liquid Jet in a Lab-scale Ramjet Combustor (모형 램젯 연소기에서 액체제트의 다상유동 해석)

  • Oh, Jeong-Seog;Lee, Won-Nam;Lee, Jong-Geun;Santavicca, Dominique A.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.386-392
    • /
    • 2010
  • The multiphase simulation of a liquid jet in a lab-scale ramjet combustor with a plain orifice type injector was studied with a commercial CFD tool, a FLUENT program. The objectives of the current study are to analysis the breakup characteristics of a hexane liquid jet in a cross flow and to derive the correlation between flow conditions and drag force coefficients in a test section. From the result of a numerical simulation, we concluded that a DPM and Realizable $k-{\varepsilon}$ model with an enhanced wall treatment were available to simulate the multiphase flow simulation. And the calculated distribution of a hexane vapor concentration was well-matched with experimental results.

  • PDF

An Experimental Study on the Structural Vibration Control Using Semi-Active Orificed Fluid Dampers (반능동형 오리피스 유체댐퍼를 이용한 구조물 진동제어에 관한 실험적 연구)

  • 문석준;김병현;정종안
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.55-62
    • /
    • 2004
  • In general, control performance of the active control system is superior to that of the passive control devices. However, the active system require a large amount of external energy to operate the actuators. Semi-active control systems maintain the reliability of the passive control systems while taking advantage of the adjustability of the active control system. In this research, a semi-active orificed fluid damper having the capacity of about 2 tons was designed and fabricated. It is a two-stage damper with normally open solenoid valve. A series of tests was performed to grasp its performance characteristics. It was also applied to a 6-story steel structure subjected to random and seismic excitations for the confirmation of its validity on structural vibration absorption.

A Numerical Study on the Factors of the Flow Hunting in a Orifice Meter (오리피스 유량계의 유동헌팅 영향인자에 관한 전산유체역학적 연구)

  • Shin, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.449-455
    • /
    • 2012
  • During the measurement of the flow rate of gases such as natural gas, flow hunting is observed in most orifice meters but the intensity of flow hunting at each metering system shows different characteristics. In order to investigate why such a difference occurs and whether the difference actually influences metering error, pipeline network analysis on the main factors and characteristics of flow hunting was carried out in a previous study. Following this, in this study, computational fluid dynamics (CFD) analysis was carried out to clarify the relation between flow instability and flow hunting and determine the factors influencing the orifice meter depending on the intensity of upward pressure fluctuation, time interval, and flow rate. Finally, we showed that the pressure hunting rate is a function of the ratio of the pressure difference before and after an orifice meter. On the basis of CFD analysis results, we also presented some major factors and relations influencing flow hunting.