Journal of the Korean Society of Marine Environment & Safety
/
v.30
no.4
/
pp.365-372
/
2024
The South Korean marine industry is emerging as a significant market, driven by the growing popularity of various water leisure activities, including sailing. This trend suggests a rising demand for sailing yachts. Consequently, since 2022, the design and development of a 28ft sailing yacht have been ongoing, supported by the government and the Ministry of Oceans and Fisheries, to promote yachting culture in South Korea. The Velocity Prediction Program (VPP) analysis was conducted using WinDesign during the preliminary design stage to evaluate performance and determine design parameters. The hydrodynamic model used for this vessel is based on regression methods developed from years of experience in naval architecture and yacht research at the Wolfson Unit, providing reliable estimates for most modern yachts. However, owing to the lack of specific hydrodynamic data from towing tank tests or CFD numerical analysis, verification of the hydrodynamic model has faced some challenges. Additionally, an incomplete weight estimate resulted in variable VCG values, potentially affecting stability and overall performance. The optimal boat speed for this vessel was determined at true wind speeds (TWS) of 4, 8, 12, 16, and 20 knots, using both the jib (up to 120° TWA) and the spinnaker (from 80° TWA). The optimized speed of the yacht was found to be comparable to that of international similar-class yachts.
A statistical prediction model for the typhoon intensity and track in the Northwestern Pacific area was developed based on the artificial neural network scheme. Specifically, this model is focused on the 5-day prediction after tropical cyclone genesis, and used the CLIPPER parameters (genesis location, intensity, and date), dynamic parameters (vertical wind shear between 200 and 850hPa, upper-level divergence, and lower-level relative vorticity), and thermal parameters (upper-level equivalent potential temperature, ENSO, 200-hPa air temperature, mid-level relative humidity). Based on the characteristics of predictors, a total of seven artificial neural network models were developed. The best one was the case that combined the CLIPPER parameters and thermal parameters. This case showed higher predictability during the summer season than the winter season, and the forecast error also depended on the location: The intensity error rate increases when the genesis location moves to Southeastern area and the track error increases when it moves to Northwestern area. Comparing the predictability with the multiple linear regression model, the artificial neural network model showed better performance.
Journal of the korean Society of Automotive Engineers
/
v.18
no.6
/
pp.23-32
/
1996
차량에서 엔진은 가장 큰 질량 집중체(concentrated mass)이다. 만약 엔진이 적절하게 구속되지 않거나 절연되어 있지 않으면, 차체에 진동을 일으키는 원인이 된다. 엔진은 다양한 진동 교란을 받는데 엔진 마운트는 이러한 모든 것들을 고립시키는 역할을 해야 하며, 엔진은 정적인 장착 하중에 대한 지지와 전후, 좌우 및 수직 방향의 운동에 대해 적절한 강성을 가져야 한다. 또한 정숙성을 향상시키기 위해서는 엔진 마운트의 재료인 고무의 강성계수를 낮추는 것이 필요한데 이는 일반적으로 내구성의 저하를 가져온다. 따라서 개발과정에서 강성계수를 낮추는 변경을 하면 부품의 내구성을 보정함에 따르는 재평가 또한 필요하게 된다. 엔진 마운트에 쓰이는 고무부품의 해석은 엔진 마운트 시스템에 대한 진동 해석 및 내구수명의 예측과 병행해야 하며, 진동해석으로부터 얻은 하중 지지 능력 등의 모든 요구 특성을 만족하기 위해서는 고무 재료의 특성에 대한 지식, 엔진 마운트의 장착 위치에 대한 결정 능력과 함께 주어진 조건에 대한 형상의 최적 설계 능력 등이 요구된다. 본 연구에서는 기본적인 형상을 파라미터화하여 엔진 마운트의 형상을 최적화 하는 절차를 제안하였다. 현재 승용차에 널리 사용되고 있는 부시형(bush type) 엔진마운트를 적용 모델로 선택하였으며, 엔진 마운트의 기본적인 형상을 몇개의 파라미터를 사용하여 정의하고 설계 사양으로 주어지는 강성값과 각 파라미터들의 조합으로 구성되는 형상이 갖는 강성값의 차이가 최소가 되도록 파라미터 값들을 최적화하였다. 최적화된 파라미터 값들로 구성되는 형상을 내구 성능, 성형성등을 고려하여 최종 형상으로 결정한다. 내구성능의 예측은 금속부품의 내구수명 예측에 널리 이용되고 있는 방법이 방진 고무부품의 경우에도 적용 가능한지를 검토하고, 방진 고무부품에도 일반적으로 적용될수 있는 내구수명 예측방안의 개발 가능성을 타진해 보았다. 본 연구의 목표는 시제품을 제작하기 이전에 설계된 부품에 대한 스프링 상수 및 내구특성을 체계적으로 규명하여 제품 시험의 횟수를 줄이고, 보다 정밀한 제품을 제작할 수 있도록 하기 위한 것이다.
In this paper, we study an algorithm that automatically determines the orders of past observations and conditional mean values that play an important role in count time series models. Based on the orders of the ARIMA model, the algorithm constitutes the order candidates group for time series generalized linear models and selects the final model based on information criterion among the combinations of the order candidates group. To evaluate the proposed algorithm, we perform small simulations and empirical analysis according to underlying models and time series as well as compare forecasting performances with the ARIMA model. The results of the comparison confirm that the time series generalized linear model offers better performance than the ARIMA model for the count time series analysis. In addition, the empirical analysis shows better performance in mid and long term forecasting than the ARIMA model.
Journal of Korea Society of Industrial Information Systems
/
v.17
no.7
/
pp.139-148
/
2012
An ensemble of classifiers is to employ a set of individually trained classifiers and combine their predictions. It has been found that in most cases the ensembles produce more accurate predictions than the base classifiers. Combining outputs from multiple classifiers, known as ensemble learning, is one of the standard and most important techniques for improving classification accuracy in machine learning. An ensemble of classifiers is efficient only if the individual classifiers make decisions as diverse as possible. Bagging is the most popular method of ensemble learning to generate a diverse set of classifiers. Diversity in bagging is obtained by using different training sets. The different training data subsets are randomly drawn with replacement from the entire training dataset. The random subspace method is an ensemble construction technique using different attribute subsets. In the random subspace, the training dataset is also modified as in bagging. However, this modification is performed in the feature space. Bagging and random subspace are quite well known and popular ensemble algorithms. However, few studies have dealt with the integration of bagging and random subspace using SVM Classifiers, though there is a great potential for useful applications in this area. The focus of this paper is to propose methods for improving SVM performance using hybrid ensemble strategy for bankruptcy prediction. This paper applies the proposed ensemble model to the bankruptcy prediction problem using a real data set from Korean companies.
Journal of the Earthquake Engineering Society of Korea
/
v.14
no.2
/
pp.75-84
/
2010
An in-cabinet response spectrum should be generated to perform the seismic qualification of devices and instruments mounted inside safety-related electrical equipment installed in nuclear power plants. The response spectrum is available by obtaining accurate seismic responses at the device mounting location of the cabinet. The dynamic behavior of most of electrical equipment may not be easily analyzed due to their complex mass and stiffness distributions. Considering these facts, this study proposes a procedure to estimate the seismic responses of a structure by a combination of a test and subsequent analysis. This technique firstly constructs the modal equations of the structure by using the experiment modal parameters obtained from the impact test. Then the seismic responses of the structure may be calculated by a mode superposition method. A simple steel frame structure was fabricated as a specimen for the validation of the proposed method. The seismic responses of the specimen were estimated by using the proposed technique and compared with the measurements obtained from the shaking table tests. The study results show that it is possible to accurately estimate the seismic response of the structure by using the experimental modal parameters obtained from the impact test.
Journal of the Computational Structural Engineering Institute of Korea
/
v.17
no.3
/
pp.251-259
/
2004
The prediction accuracy of prestress plays an important role in the quality of maintenance and the decision on rehabilitation of infrastructure such as prestressed concrete bridges. In this paper, the Bayesian statistical method that uses in-situ measurement data for reducing the uncertainties or updating long-term prediction of prestress is presented. For Bayesian analysis, prior probability distribution is developed to represent the uncertainties of creep and shrinkage of concrete and likelihood function is derived and used with data acquired in site. Posterior probability distribution is then obtained by combining prior distribution and likelihood function. The numerical results of this study indicate that more accurate long-term prediction of prestress forces due to creep and shrink age is possible.
In this study, 34 laboratory load test data were collected, and analyzed to propose the equations for predicting ultimate bearing capacity of sand compaction pile (SCP) and gravel compaction pile (GCP) reinforced clay. The collected data were compared with the ultimate bearing capacity estimated by existing theoretical equations, and the prediction accuracy of the existing theoretical equations was identified. Also, multiple regression analysis was performed to predict the ultimate bearing capacity, and the most efficient number and type of input variables were selected through error evaluation by leave-one-out cross validation. Finally, the multiple regression equations for estimating the ultimate bearing capacity of laboratory load test for SCP and GCP were proposed, and their performance was evaluated.
Export-led policies, FTA signed and economics of scale through a variety of market-oriented policies, such as regulations to improve market grew constantly. Accordingly, the correct decision making accurately analyze the economics market for decision, a problem has been an important issue in predicting. For accurate analysis and decision-making of the most common indicators of the stock market by proposing a number of indicators of economic transformation techniques were applied to the convergence model combining estimation and forecasts problem confirmed its effectiveness. Experimental result, gave the model estimation method to apply a transform to show the valid combinations proposed model state estimation result was confirmed in a very similar exercise aspect of the physical problem and the KOSPI index prediction.
Learning from human behaviors in the real world is essential for human-aware intelligent systems such as smart assistants and autonomous robots. Most of research focuses on correlations between sensory patterns and a label for each activity. However, human activity is a combination of several event contexts and is a narrative story in and of itself. We propose a novel approach of human activity prediction based on event cognition. Egocentric multi-sensor data are collected from an individual's daily life by using a wearable device and smartphone. Event contexts about location, scene and activities are then recognized, and finally the users" daily activities are predicted from a decision rule based on the event contexts. The proposed method has been evaluated on a wearable sensor data collected from the real world over 2 weeks by 2 people. Experimental results showed improved recognition accuracies when using the proposed method comparing to results directly using sensory features.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.