• Title/Summary/Keyword: 예측 모형

Search Result 6,113, Processing Time 0.035 seconds

A Study on the Development of a Simulation Model for Predicting Soil Moisture Content and Scheduling Irrigation (토양수분함량 예측 및 계획관개 모의 모형 개발에 관한 연구(I))

  • 김철회;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4279-4295
    • /
    • 1977
  • Two types of model were established in order to product the soil moisture content by which information on irrigation could be obtained. Model-I was to represent the soil moisture depletion and was established based on the concept of water balance in a given soil profile. Model-II was a mathematical model derived from the analysis of soil moisture variation curves which were drawn from the observed data. In establishing the Model-I, the method and procedure to estimate parameters for the determination of the variables such as evapotranspirations, effective rainfalls, and drainage amounts were discussed. Empirical equations representing soil moisture variation curves were derived from the observed data as the Model-II. The procedure for forecasting timing and amounts of irrigation under the given soil moisture content was discussed. The established models were checked by comparing the observed data with those predicted by the model. Obtained results are summarized as follows: 1. As a water balance model of a given soil profile, the soil moisture depletion D, could be represented as the equation(2). 2. Among the various empirical formulae for potential evapotranspiration (Etp), Penman's formula was best fit to the data observed with the evaporation pans and tanks in Suweon area. High degree of positive correlation between Penman's predicted data and observed data with a large evaporation pan was confirmed. and the regression enquation was Y=0.7436X+17.2918, where Y represents evaporation rate from large evaporation pan, in mm/10days, and X represents potential evapotranspiration rate estimated by use of Penman's formula. 3. Evapotranspiration, Et, could be estimated from the potential evapotranspiration, Etp, by introducing the consumptive use coefficient, Kc, which was repre sensed by the following relationship: Kc=Kco$.$Ka+Ks‥‥‥(Eq. 6) where Kco : crop coefficient Ka : coefficient depending on the soil moisture content Ks : correction coefficient a. Crop coefficient. Kco. Crop coefficients of barley, bean, and wheat for each growth stage were found to be dependent on the crop. b. Coefficient depending on the soil moisture content, Ka. The values of Ka for clay loam, sandy loam, and loamy sand revealed a similar tendency to those of Pierce type. c. Correction coefficent, Ks. Following relationships were established to estimate Ks values: Ks=Kc-Kco$.$Ka, where Ks=0 if Kc,=Kco$.$K0$\geq$1.0, otherwise Ks=1-Kco$.$Ka 4. Effective rainfall, Re, was estimated by using following relationships : Re=D, if R-D$\geq$0, otherwise, Re=R 5. The difference between rainfall, R, and the soil moisture depletion D, was taken as drainage amount, Wd. {{{{D= SUM from { {i }=1} to n (Et-Re-I+Wd)}}}} if Wd=0, otherwise, {{{{D= SUM from { {i }=tf} to n (Et-Re-I+Wd)}}}} where tf=2∼3 days. 6. The curves and their corresponding empirical equations for the variation of soil moisture depending on the soil types, soil depths are shown on Fig. 8 (a,b.c,d). The general mathematical model on soil moisture variation depending on seasons, weather, and soil types were as follow: {{{{SMC= SUM ( { C}_{i }Exp( { - lambda }_{i } { t}_{i } )+ { Re}_{i } - { Excess}_{i } )}}}} where SMC : soil moisture content C : constant depending on an initial soil moisture content $\lambda$ : constant depending on season t : time Re : effective rainfall Excess : drainage and excess soil moisture other than drainage. The values of $\lambda$ are shown on Table 1. 7. The timing and amount of irrigation could be predicted by the equation (9-a) and (9-b,c), respectively. 8. Under the given conditions, the model for scheduling irrigation was completed. Fig. 9 show computer flow charts of the model. a. To estimate a potential evapotranspiration, Penman's equation was used if a complete observed meteorological data were available, and Jensen-Haise's equation was used if a forecasted meteorological data were available, However none of the observed or forecasted data were available, the equation (15) was used. b. As an input time data, a crop carlender was used, which was made based on the time when the growth stage of the crop shows it's maximum effective leaf coverage. 9. For the purpose of validation of the models, observed data of soil moiture content under various conditions from May, 1975 to July, 1975 were compared to the data predicted by Model-I and Model-II. Model-I shows the relative error of 4.6 to 14.3 percent which is an acceptable range of error in view of engineering purpose. Model-II shows 3 to 16.7 percent of relative error which is a little larger than the one from the Model-I. 10. Comparing two models, the followings are concluded: Model-I established on the theoretical background can predict with a satisfiable reliability far practical use provided that forecasted meteorological data are available. On the other hand, Model-II was superior to Model-I in it's simplicity, but it needs long period and wide scope of observed data to predict acceptable soil moisture content. Further studies are needed on the Model-II to make it acceptable in practical use.

  • PDF

Comparison of Breeding Value by Establishment of Genomic Relationship Matrix in Pure Landrace Population (유전체 관계행렬 구성에 따른 Landrace 순종돈의 육종가 비교)

  • Lee, Joon-Ho;Cho, Kwang-Hyun;Cho, Chung-Il;Park, Kyung-Do;Lee, Deuk Hwan
    • Journal of Animal Science and Technology
    • /
    • v.55 no.3
    • /
    • pp.165-171
    • /
    • 2013
  • Genomic relationship matrix (GRM) was constructed using whole genome SNP markers of swine and genomic breeding value was estimated by substitution of the numerator relationship matrix (NRM) based on pedigree information to GRM. Genotypes of 40,706 SNP markers from 448 pure Landrace pigs were used in this study and five kinds of GRM construction methods, G05, GMF, GOF, $GOF^*$ and GN, were compared with each other and with NRM. Coefficients of GOF considering each of observed allele frequencies showed the lowest deviation with coefficients of NRM and as coefficients of GMF considering the average minor allele frequency showed huge deviation from coefficients of NRM, movement of mean was expected by methods of allele frequency consideration. All GRM construction methods, except for $GOF^*$, showed normally distributed Mendelian sampling. As the result of breeding value (BV) estimation for days to 90 kg (D90KG) and average back-fat thickness (ABF) using NRM and GRM, correlation between BV of NRM and GRM was the highest by GOF and as genetic variance was overestimated by $GOF^*$, it was confirmed that scale of GRM is closely related with estimation of genetic variance. With the same amount of phenotype information, accuracy of BV based on genomic information was higher than BV based on pedigree information and these symptoms were more obvious for ABF then D90KG. Genetic evaluation of animal using relationship matrix by genomic information could be useful when there is lack of phenotype or relationship and prediction of BV for young animals without phenotype.

Detecting the Climate Factors related to Dry Matter Yield of Whole Crop Maize (사일리지용 옥수수의 건물수량에 영향을 미치는 기후요인 탐색)

  • Peng, Jing-lun;Kim, Moon-ju;Kim, Young-ju;Jo, Mu-hwan;Nejad, Jalil Ghassemi;Lee, Bae-hun;Ji, Do-hyeon;Kim, Ji-yung;Oh, Seung-min;Kim, Byong-wan;Kim, Kyung-dae;So, Min-jeong;Park, Hyung-soo;Sung, Kyung-il
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.261-269
    • /
    • 2015
  • The purpose of this research is to identify the significance of climate factors related to the significance of change of dry matter yield (DMY) of whole crop maize (WCM) by year through the exploratory data analysis. The data (124 varieties; n=993 in 7 provinces) was prepared after deletion and modification of the insufficient and repetitive data from the results (124 varieties; n=1027 in 7 provinces) of import adaptation experiment done by National Agricultural Cooperation Federation. WCM was classified into early-maturity (25 varieties, n=200), mid-maturity (40 varieties, n=409), late-maturity (27 varieties, n=234) and others (32 varieties, n=150) based on relative maturity and days to silking. For determining climate factors, 6 weather variables were generated using weather data. For detecting DMY and climate factors, SPSS21.0 was used for operating descriptive statistics and Shapiro-Wilk test. Mean DMY by year was classified into upper and lower groups, and a statistically significant difference in DMY was found between two groups (p<0.05). To find the reasons of significant difference between two groups, after statistics analysis of the climate variables, it was found that Seeding-Harvesting Accumulated Growing Degree Days (SHAGDD), Seeding-Harvesting Precipitation (SHP) and Seeding-Harvesting Hour of sunshine (SHH) were significantly different between two groups (p<0.05), whereas Seeding-Harvesting number of Days with Precipitation (SHDP) had no significant effects on DMY (p>0.05). These results indicate that the SHAGDD, SHP and SHH are related to DMY of WCM, but the comparison of R2 among three variables (SHAGDD, SHP and SHH) couldn't be obtained which is needed to be done by regression analysis as well as the prediction model of DMY in the future study.

Optimization for Extraction of ${\beta}-Carotene$ from Carrot by Supercritical Carbon Dioxide (초임계 유체에 의한 당근의 ${\beta}-Carotene$ 추출의 최적화)

  • Kim, Young-Hoh;Chang, Kyu-Seob;Park, Young-Deuk
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.411-416
    • /
    • 1996
  • Supercritical fluid extraction of ${\beta}$-carotene from carrot was optimized to maximize ${\beta}$-carotene (Y) extraction yield. A central composite design involving extraction pressure ($X_1$ 200-,100 bar), temperature ($X_2,\;35-51^{\circ}C$) and time ($X_1$$ 60-200min) was used. Three independent factors ($X_1,\;X_2,\;X_3$) were chosen to determine their effects on the various responses and the function was expressed in terms of a quadratic polynomial equation,$Y={\beta}_0+{\beta}_1X_1+{\beta}_2X_2+{\beta}_3X_3+{\beta}_11X_12+{\beta}_22X_3^2+{\beta}_-12X_1X_2+{\beta}_12X_1X_2+{\beta}_13X_1X_3+{\beta}_23X_2X_3,$ which measures the linear, quadratic and interaction effects. Extraction yields of ${\beta}$-carotene were affected by pressure, time and temperature in the decreasing order, and linear effect of tenter point (${\beta}_11$) and pressure (${\beta}_1$) were significant at a level of 0.001(${\alpha}$). Based on the analysis of variance, the model fitted for ${\beta}_11$-carotene (Y) was significant at 5% confidence level and the coefficient of determination was 0.938. According to the response surface of ${\beta}$-carotene by cannoical analysis, the stationary point for quantitatively dependent variable (Y) was found to be the maximum point for extraction yield. Response area for ${\beta}$-carotene (Y) in terms of interesting region was estimated over $10,611{\mu}g$ Per 100 g raw carrot under extraction.

  • PDF

Assessment of Climate Change Impact on Storage Behavior of Chungju and the Regulation Dams Using SWAT Model (SWAT을 이용한 기후변화가 충주댐 및 조정지댐 저수량에 미치는 영향 평가)

  • Jeong, Hyeon Gyo;Kim, Seong-Joon;Ha, Rim
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1235-1247
    • /
    • 2013
  • This study is to evaluate the climate change impact on future storage behavior of Chungju dam($2,750{\times}10^6m^3$) and the regulation dam($30{\times}10^6m^3$) using SWAT(Soil Water Assessment Tool) model. Using 9 years data (2002~2010), the SWAT was calibrated and validated for streamflow at three locations with 0.73 average Nash-Sutcliffe model Efficiency (NSE) and for two reservoir water levels with 0.86 NSE respectively. For future evaluation, the HadCM3 of GCMs (General Circulation Models) data by scenarios of SRES (Special Report on Emission Scenarios) A2 and B1 of the IPCC (Intergovernmental Panel on Climate Change) were adopted. The monthly temperature and precipitation data (2007~2099) were spatially corrected using 30 years (1977~2006, baseline period) of ground measured data through bias-correction, and temporally downscaled by Change Factor (CF) statistical method. For two periods; 2040s (2031~2050), 2080s (2071~2099), the future annual temperature were predicted to change $+0.9^{\circ}C$ in 2040s and $+4.0^{\circ}C$ in 2080s, and annual precipitation increased 9.6% in 2040s and 20.7% in 2080s respectively. The future watershed evapotranspiration increased up to 15.3% and the soil moisture decreased maximum 2.8% compared to baseline (2002~2010) condition. Under the future dam release condition of 9 years average (2002~2010) for each dam, the yearly dam inflow increased maximum 21.1% for most period except autumn. By the decrease of dam inflow in future autumn, the future dam storage could not recover to the full water level at the end of the year by the present dam release pattern. For the future flood and drought years, the temporal variation of dam storage became more unstable as it needs careful downward and upward management of dam storage respectively. Thus it is necessary to adjust the dam release pattern for climate change adaptation.

Bias Correction for GCM Long-term Prediction using Nonstationary Quantile Mapping (비정상성 분위사상법을 이용한 GCM 장기예측 편차보정)

  • Moon, Soojin;Kim, Jungjoong;Kang, Boosik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.833-842
    • /
    • 2013
  • The quantile mapping is utilized to reproduce reliable GCM(Global Climate Model) data by correct systematic biases included in the original data set. This scheme, in general, projects the Cumulative Distribution Function (CDF) of the underlying data set into the target CDF assuming that parameters of target distribution function is stationary. Therefore, the application of stationary quantile mapping for nonstationary long-term time series data of future precipitation scenario computed by GCM can show biased projection. In this research the Nonstationary Quantile Mapping (NSQM) scheme was suggested for bias correction of nonstationary long-term time series data. The proposed scheme uses the statistical parameters with nonstationary long-term trends. The Gamma distribution was assumed for the object and target probability distribution. As the climate change scenario, the 20C3M(baseline scenario) and SRES A2 scenario (projection scenario) of CGCM3.1/T63 model from CCCma (Canadian Centre for Climate modeling and analysis) were utilized. The precipitation data were collected from 10 rain gauge stations in the Han-river basin. In order to consider seasonal characteristics, the study was performed separately for the flood (June~October) and nonflood (November~May) seasons. The periods for baseline and projection scenario were set as 1973~2000 and 2011~2100, respectively. This study evaluated the performance of NSQM by experimenting various ways of setting parameters of target distribution. The projection scenarios were shown for 3 different periods of FF scenario (Foreseeable Future Scenario, 2011~2040 yr), MF scenario (Mid-term Future Scenario, 2041~2070 yr), LF scenario (Long-term Future Scenario, 2071~2100 yr). The trend test for the annual precipitation projection using NSQM shows 330.1 mm (25.2%), 564.5 mm (43.1%), and 634.3 mm (48.5%) increase for FF, MF, and LF scenarios, respectively. The application of stationary scheme shows overestimated projection for FF scenario and underestimated projection for LF scenario. This problem could be improved by applying nonstationary quantile mapping.

Regionality and Variability of Net Primary Productivity and Rice Yield in Korea (우리 나라의 순1차생산력 및 벼 수량의 지역성과 변이성)

  • JUNG YEONG-SANG;BANG JUNG-HO;HAYASHI YOSEI
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • Rice yield and primary productivity (NPP) are dependent upon the variability of climate and soil. The variability and regionality of the rice yield and net primary productivity were evaluated with the meteorological data collected from Korea Meteorology Administration and the actual rice yield data from the Ministration of Agriculture and Forestry, Korea. The estimated NPP using the three models, dependent upon temperature(NPP-T), precipitation(NPP-P) and net radiation(NPP-R), ranged from 10.87 to 17.52 Mg ha$^{-1}$ with average of 14.69 Mg ha$^{-1}$ in the South Korea and was ranged 6.47 to 15.58 Mg ha$^{-1}$ with average of 12.59 Mg ha$^{-1}$ in the North Korea. The primary limiting factor of NPP in Korea was net radiation, and the secondary limiting factor was temperature. Spectral analysis on the long term change in air temperature in July and August showed periodicity. The short periodicity was 3 to 7 years and the long periodicity was 15 to 43 years. The coefficient of variances, CV, of the rice yield from 1989 to 1998 ranged 3.23 percents to 12.37 percents which were lower than past decades. The CV's in Kangwon and Kyeongbuk were high while that in Chonbuk was the lowest. The prediction model based on th e yield index and yield response to temperature obtain ed from the field crop situation showed reasonable results and thus the spatial distributions of rice yield and predicted yield could be expressed in the maps. The predicted yields was well fitted with the actual yield except Kyungbuk. For better prediction, modification should be made considering radiation factor in further development.

  • PDF

Freeze Risk Assessment for Three Major Peach Growing Areas under the Future Climate Projected by RCP8.5 Emission Scenario (신 기후변화시나리오 RCP 8.5에 근거한 복숭아 주산지 세 곳의 동해위험도 평가)

  • Kim, Soo-Ock;Kim, Dae-Jun;Kim, Jin-Hee;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.3
    • /
    • pp.124-131
    • /
    • 2012
  • This study was carried out to evaluate a possible change in freeze risk for 'Changhowon Hwangdo' peach buds in three major peach growing areas under the future climate projected by RCP8.5 emission scenario. Mean values of the monthly temperature data for the present decade (2000s) and the future decades (2020s, 2050s, 2080s) were extracted for farm lands in Icheon, Chungju, and Yeongcheon-Gyeongsan region at 1km resolution and 30 sets of daily temperature data were generated randomly by a stochastic process for each decade. The daily data were used to calculate a thermal time-based dormancy depth index which is closely related to the cold tolerance of peach buds. Combined with daily minimum temperature, dormancy depth can be used to estimate the potential risk of freezing damage on peach buds. When the freeze risk was calculated daily for the winter period (from 1 November to 15 March) in the present decade, Icheon and Chungju regions had high values across the whole period, but Yeongcheon-Gyeongsan regions had low values from mid-December to the end of January. In the future decades, the frequency of freezing damage would be reduced in all 3 regions and the reduction rate could be as high as 75 to 90% by 2080's. However, the severe class risk (over 80% damage) will not disappear in the future and most occurrences will be limited to December to early January according to the calculation. This phenomenon might be explained by shortened cold hardiness period caused by winter warming as well as sudden cold waves resulting from the higher inter-annual climate variability projected by the RCP8.5 scenario.

Studies on Effects of Channel Bed Fixation by Erosion Control Dams in Torrential Streams (황폐계류(荒廢溪流)에 있어서 사방시설물(砂防施設物)에 의한 하도고정(河道固定)에 관한 연구(硏究))

  • Chun, Kun Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.3
    • /
    • pp.269-277
    • /
    • 1990
  • In planning the disaster prevention by the erosion control facilities, it is essential to focus on the microtopography of the channel bed and the chronological process of sedimental movement in the torrential streams. For this purpose, the microtopographical change of the channel bed and the effects of the erosion control facilities in the mountain torrents were analyzed by the experimental channel and the field survey of the torrents where low-dam series had been constructed in the channel. The results of this experiment showed that the effects of construction of the low-dam series on the channel bed fixiation were the prevention of the local scouring in the experimental channel and the expansion of flow channel width and deposit space. The results are summarized as follows : 1. When the low-dam series were constructed over the whole channel bed (L'/L=1), the conning water and the sediment were seperated, simultaneously resulting in deposition of sediment and reduction of the tractive force for the running water. Therefore, the F.A. (Fluctuation area in cross-section: value was decreased to about 65% compared with that of non-work (L'/L=0). 2. The efficiencies of the low-dam series on the channel width were increased with an increment in length of working space. After the construction of low-dam series on the whole channel bed (L'/L=1), flow channel width was increased to about 1.53 times compared with that of non-work (L'/L=0). 3. It needs a deposition area to store the sediment with decrease in tractive force. The low-dam series in the experimental channel widened the deposition area about 2.10 times compared with that of non-work.

  • PDF

The Effects of Emotional Perception on Major Satisfaction among Students at the Department of Dental Hygiene (치위생과 학생의 정서적 인식이 전공만족도에 미치는 영향)

  • Yu, Ji-Su;Choi, Su-Young
    • Journal of dental hygiene science
    • /
    • v.10 no.5
    • /
    • pp.307-314
    • /
    • 2010
  • This study aimed to measure such features of emotional responses perceived by students as learning climate, department living stress, and perceived helplessness to analyze their effects on major satisfaction among students at the department of dental hygiene; to do this, a survey was conducted with 431 students, regardless of college year, who were at the department of dental hygiene in four colleges in Gyeonggi Province, Daejeon, and Chungcheong Province. An existing emotion scale which went through the generalization process was used to draw a multiple model in the combination form in order to collect emotional factors affecting college students' satisfaction with their major, which had existed as a hypothetical proposition, and make overall interpretation of relevance through the explainable, predictable modeling process by measuring emotional factors and phenomenal description of the level of general perception. The results showed that major satisfaction was very significantly affected by emotional features among students at the department of dental hygiene, which needs to be treated as an important factor to enhance expertise related to major learning and improve students' living.