• Title/Summary/Keyword: 예조건화 기법

Search Result 47, Processing Time 0.026 seconds

A Study on Convergence Enhancement Using Preconditioning Methods in Compressible Low Speed Flows (저속 압축성 유동에서 예조건화 방법을 이용한 수렴성 증진에 대한 연구)

  • Lee, Jae-Eun;Park, Soo-Hyung;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.8-17
    • /
    • 2005
  • It is well known that preconditioning methods are efficient for convergence acceleration in the compressible low Mach number flows. In this study, the original Euler equations and three differently nondimensionalized preconditioning methods are implemented in two dimensional inviscid bump flows using the 3rd order MUSCL and DADI schemes as numerical flux discretization and time integration, respectively. The multigrid and local time stepping methods are also used to accelerate the convergence. The test case indicates that a properly modified local preconditioning technique involving concepts of a global preconditioning allows Mach number independent convergence. Besides, an asymptotic analysis for properties of preconditioning methods is added.

Effects of Characteristic Condition Number on Convergence in Calculating Low Mach Number Flows, I : Euler Equations (저속 유동 계산의 수렴성에 미치는 특성 조건수의 영향 I : 오일러 방정식)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.115-122
    • /
    • 2008
  • The effects of characteristic condition number on the convergence of preconditioned Euler equations were investigated. The two-dimensional preconditioned Euler equations adopting Choi and Merkle's preconditioning and the temperature preconditioning are considered. Preconditioned Roe's FDS scheme was adopted for spatial discretization and preconditioned LU-SGS scheme was used for time integration. It is shown that the convergence characteristics of the Euler equations are strongly affected by the characteristic condition number, and there is an optimal characteristic condition number for a problem. The optimal characteristic condition numbers for the Choi and Merkle's preconditioning and temperature preconditioning are different.

Temperature Preconditioning for Improving Convergence Characteristics in Calculating Low Mach Number Flows, I: Euler Equations (저속 유동 계산의 수렴성 개선을 위한 온도예조건화 I: 오일러 방정식)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1067-1074
    • /
    • 2007
  • A temperature preconditioning that modulates the derivative of density with respect to temperature is proposed to improve the convergence characteristics of the preconditioned Euler equations. Flows in a two-dimensional channel with a 10% circular bump in the middle of the channel were calculated at different speeds. The numerical dissipation terms of the Roe’s FDS scheme according to the temperature preconditioning are derived. It is shown that the temperature preconditioning accelerates convergence of the preconditioned Euler equations.

Effects of Characteristic Condition Number on Convergence in Calculating Low Mach Number Flows, II : Navier-Stokes Equations (저속 유동 계산의 수렴성에 미치는 특성 조건수의 영향 II : 나비어스톡스 방정식)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.123-130
    • /
    • 2008
  • The effects of characteristic condition number on the convergence of preconditioned Navier-Stokes equations were investigated. The two-dimensional preconditioned Navier-Stokes adopting Choi and Merkle's preconditioning and the temperature preconditioning are considered. Preconditioned Roe's FDS scheme was adopted for spatial discretization and preconditioned LU-SGS scheme was used for time integration. It is shown that the convergence characteristics of the Navier-Stokes equations are strongly affected by the characteristic condition number. Also it is shown that the optimal characteristic condition numbers for viscous flows are larger than that in inviscid flows.

Accurate and Robust Computations of Gas-Liquid Two-Phase Flows Part 2: Preconditioned Two-Phase Schemes for All Speeds (액체-기체 2상 유동장의 정확하고 강건한 해석 Part 2: 전 마하수 영역 해석을 위한 예조건화)

  • Ihm, Seung-Won;Kim, Chong-Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.17-27
    • /
    • 2009
  • Two-phase RoeM and AUSMPW+ schemes are preconditioned for the simulation of all Mach number flows, which are generally of interest for many gas-liquid two-phase application problems, because of large speed of sound in liquid region and low speed of sound in mixture or gas region. Conventional characteristic based schemes lose their accuracy or robustness in low Mach number flows, because their numerical dissipation terms are scaled by speed of sound, which is too large compared with local velocity magnitude in a low Mach region. All speed versions of RoeM and AUSMPW+ reflect the eigenvalues of the preconditioned governing system, which have the same order of magnitude even in low Mach number region. From the asymptotic analysis, it is observed that the discretized system by the developed schemes is consistent with the continuum system in the incompressible limit. The numerical results show the accurate and robust behavior of the proposed shcemes for all speed two-phase flows.

Convergence Characteristics of Preconditioned Euler Equations (예조건화된 오일러 방정식의 수렴특성)

  • 이상현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.27-37
    • /
    • 2004
  • The convergence characteristics of preconditioned Euler equations were studied. A perturbation analysis was conducted to understand the behavior of the preconditioned Euler equations. Various speed flows in a two-dimensional channel with a 10% circular arc in the middle of the channel were calculated. Roe's FDS scheme was used for spatial discretization and the LU-SGS scheme was used for time integration. It is shown that the convergence characteristics of pressure and velocity were maintained regardless of the Mach numbers but that the convergence characteristics of temperature were strongly related to the Mach number and became worse as the Mach number decreased. The perturbation analysis well explained the trend of the convergence characteristics and showed that the convergence characteristics are strongly related with the behavior o( the Preconditioning matrix.

Application of Preconditioning to Navier-Stokes Equations (예조건화 방법론의 Navier-Stokes 방정식에의 적용)

  • 이상현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.16-26
    • /
    • 2004
  • The objective of this study is to apply preconditioning to Wavier-Stokes equations with a turbulence model. The concept of a pseudo sonic speed was adopted. Roe's FDS was used for spatial discretization, LU-SGS scheme was used for time integration. In order to test the algorithms, the low speed flows around NACA airfoils and the flows through supersonic nozzle were calculated. The algorithm developed in the present study shows good performance in the calculations of low speed viscous flows and supersonics flows.

Preconditioning Method of a Finite Element Combined Formulation for Fluid-Structure Interaction (유체-구조물 상호작용을 위한 유한요소 결합공식화의 예조건화에 대한 연구)

  • Choi, Hyoung-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.242-247
    • /
    • 2009
  • AILU type preconditioners for a two-dimensional combined P2P1 finite element formulation of the interaction of rigid cylinder with incompressible fluid flow have been devised and tested by solving fluid-structure interaction (FSI) problems. The FSI code simulating the interaction of a rigid cylinder with an unsteady flow is based on P2P1 mixed finite element formulation coupled with combined formulation. Four different preconditioners were devised for the two-dimensional combined P2P1 finite element formulation extending the idea of Nam et al., which was proposed for the preconditioning of a P2P1 mixed finite element formulation of the incompressible Navier-Stokes equations. It was found that PC-III or PC-IV among them perform well with respect to computational memory and convergence rate for some bench-mark problems.

Application of A Local Preconditioning Method for 3-D Compressible Low Mach Number Flows (3차원 저속 압축성 유동 해석을 위한 국소 예조건화 기법 적용 연구)

  • Yoo, Il-Yong;Jin, Min-Suk;Kwak, Ein-Keun;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.939-946
    • /
    • 2008
  • Euler codes or Navier-Stokes codes for compressible flows suffer severe degradation in convergence as Mach number approaches zero. The convergence problem arose from the wide disparity in characteristic speeds can be solved using preconditioning methods without large modifications. In this paper, a preconditioned RANS(Reynolds Averaged Navier-Stokes) solver is developed for analysis of low Mach number flows. In order to validate the method, computational examples are chosen and the results are compared with the experimental data and the existing computed results showing a good accuracy and convergence characteristics for steady inviscid, laminar and turbulent flows at low Mach number.

Convergence Study of the Multigrid Navier-Stokes Simulation : II. Implicit Preconditioners (다중 격자 Navier-Stokes 해석을 위한 수렴 특성 연구 : II. 내재적 예조건자)

  • Kim, Yoon-Sik;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.1-8
    • /
    • 2004
  • The objective of this study is convergence acceleration of multigrid Navier-Stokes solvers. This study has been performed to enhance the performance of preconditioned multi-stage time stepping method which is a popular smoother for the multigrid Navier-Stokes solvers. Comparative study on the convergence characteristics of the ADI and DDADI preconditioners has been conducted. It is shown that the DDADI preconditioner has better performance than the ADI by numerical tests on the 2-D compressible turbulent flows past airfoils. The Spalart-Allmaras turbulent model and the Baldwin-Lomax turbulent model have been compared with the multigrid calculations.