• Title/Summary/Keyword: 영향 예측

Search Result 9,681, Processing Time 0.042 seconds

A Process of Selecting Productivity Influencing Factors For Forecasting Construction Productivity (생산성 예측을 위한 생산성 영향요인 선정 프로세스)

  • Lim, Jae-In;Kim, Yea-Sang;Kim, Young-Suk;Kim, Sang-Bum
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.4
    • /
    • pp.92-100
    • /
    • 2008
  • Productivity is acknowledged as a very important factor for successful construction projects. Various data items collected daily form a construction site can be used for monitoring its productivity by analyzing them. However, no analytical methods for that purpose have been established in the domestic construction industry yet. Previous researches that utilized OLAP and data mining to analyze the factors that affect the productivity did not do well with predicting future cases with sufficient reliability. This research therefore proposes a new analytical process which is capable of figuring out the factors that would affect the productivity of future projects, through qualitative and quantitative analysis of the data collected from past projects.

Prediction model for the microstructure and properties in weld heat affected zone of low alloyed steel (저합금강의 용접 열영향부 미세조직 및 재직 예측)

  • Lee, Chang-Hee
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.1-10
    • /
    • 2010
  • 강재의 구조화에 필수적인 용접 공정 후의 저합금강 용접 열영향부 미세조직 및 재질 예측을 위해 가열 중 상변태 거동에 미치는 초기 결정립 크기의 영향, 석출물-free 오스테나이트 결정립 성장 예측 모델, 임계 석출물 크기의 영향을 고려한 용접 열영향부 석출물 조대화 예측 모델, 석출물의 Kinetics을 고려한 결정립 성장 모델, 초기 오스테나이트 결정립크기 및 냉각 속도의 영향을 고려한 용접 열영향부 상변태 모델, 용접 열영향부 경도 예측 모델 등에 대해 연구를 수행하였다. 이를 통해 작성된 최종 모델은 실 용접부와의 비교를 통해 신뢰성을 확인하였으며, 저합금강 용접 열영향부의 미세조직과 경도값을 잘 예측하는 것으로 판단된다. 따라서 본 연구를 통해 작성된 모델을 통하여 용접 열영향부에서의 용접부 품질을 확인하기 위한 시간적, 경제적 비용을 절감할 수 있을 것으로 기대된다.

  • PDF

KOSPI 200예측에 있어서 개입시계열모형과 인공신경망모형의 성과비교

  • 양유모;하은호;오경주
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.11a
    • /
    • pp.177-182
    • /
    • 2003
  • 많은 경제 시계열 자료 중에서 주가는 국내외 경제상황은 물론 정부정책 등 시장 외적인 영향에 가장 민감하게 반응한다. 하지만, 지금까지의 주가예측에 있어서는 이러한 외부의 영향, 즉 개입(Intervention)이 발생했을 때 주가의 변동에 능동적으로 대처하는 모형이 부재하였다. 실제로 이러한 개입사실을 예측모형에 반영하지 않는다면, 주가예측 있어 그 예측력을 따진다는 것은 무의미하다고 판단된다. 따라서, 개입시점을 발견하고, 이 개입효과를 측정하여 이를 모형에 반영한다면 좋은 예측결과를 얻을 수 있을 것이다. 이 연구에서는 이상점 탐지절차를 이용하여 개입 시점을 발견하고 개입의 효과가 개입시점에만 영향을 주는 모형과 효과가 일정기간 지속되는 모형으로 두 개의 개입시계열모형을 구축하고, 이러한 두 모형의 예측성과와 인공신경망모형을 이용한 예측성과를 비교하였다. 초단기예측(개입 직후 예측)에 있어서 개입의 효과가 지속되는 경우에는 개입시계열이 인공신경망보다 좋을 결과 를 나타내긴 했지만 그 차이는 크지 않았으며, 개입의 효과가 시점에만 영향을 준 경우에는 인공신경망의 결과가 더 우수한 것으로 나타났다. 단기예측(개입 후 20 일후의 예측)에 있어서는 개입 효과의 지속여부에 상관없이 인공신경망이 개입시계열모형보다 우수한 것으로 나타났다.

  • PDF

Assessing likelihood of drought impact occurrence in South korea through machine learning (머신러닝 기법을 통한 우리나라 가뭄 영향 발생 가능성 평가)

  • Seo, Jungho;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.77-77
    • /
    • 2021
  • 가뭄은 사회·경제적으로 매우 큰 피해를 주는 자연재해이며, 그 시작과 발생 지역을 정확하게 예측하는 데 어려운 문제가 있다. 이에 수문 분야에서는 가뭄에 영향을 미치는 수문·기상인자들을 이용하여 다양한 가뭄지수를 개발하였고 이를 활용하여 가뭄 현상을 모니터링하고 예측 및 전망하는데 다양한 노력을 기울이고 있다. 하지만 가뭄지수들은 실제 가뭄이 어떠한 형태로 발생하는지 파악하기에 많은 한계점을 가지고 있다. 이에 최근 들어 미국과 유럽에서는 실제 농업, 환경, 에너지 등과 같은 다양한 분야에 걸쳐 가뭄 피해로 인해 생기는 가뭄 영향을 보다 체계적이고 상세한 데이터 인벤토리로 구축하고 가뭄지수와의 상관관계, 회귀분석과 같은 연구를 통해 가뭄 영향 예측을 시도하고 있다. 따라서 본 연구에서는 보고서, 데이터베이스, 웹 크롤링(Web-Crawling)을 통한 뉴스 기사 등과 같은 자료를 수집하여 국내 가뭄 영향 인벤토리를 구축하였다. 또한 수문 분야에 널리 사용되고 있는 가뭄지수인 표준 강수 증발산량지수 SPEI(Standardized Precipitation-Evapotranspiration Index)를 기반으로 지역에 따른 가뭄 영향을 예측하기 위해 최근 로지스틱 회귀모형, Random forest, Support vector machine, XGBoost 등의 다양한 머신러닝 기법을 적용하였다. 각 모형의 성능을 Receiver Operating Characteristic(ROC) 곡선을 통해 평가하여 가뭄 영향 예측에 적절한 머신러닝 기법을 제시하였다. 본 연구 결과를 통해 텍스트 기반의 가뭄 영향 자료와 머신러닝 기법을 통한 가뭄 영향 예측 방법론은 가뭄 재난 관리에 유용한 정보를 제공할 수 있다.

  • PDF

Development of an incident impact analysis system using short-term traffic forecasts (단기예측기법을 이용한 연속류 유고영향 분석시스템)

  • Yu, Jeong-Whon;Kim, Ji-Hoon
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • Predictive information on the freeway incident impacts can be a critical criterion in selecting travel options for users and in operating transportation system for operators. Provided properly, users can select time-effective route and operators can effectively run the system efficiently. In this study, a model is proposed to predict freeway incident impacts. The predictive model for incident impacts is based on short-term prediction. The proposed models are examined using MARE. The analysis results suggest that the models are accurate enough to be deployed in a real-world. The development of microscopic models to predict incident effects is expected to help minimize traffic delay and mitigate related social costs.

The Effect of Prediction and Emotion on Hindsight Bias (예측과 정서가 후견지명 편향에 끼치는 영향)

  • Kim, Sung-Eun;Hyun, Ju-Ha;Han, Kwang-Hee
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02b
    • /
    • pp.475-481
    • /
    • 2008
  • 본 연구는 어떤 사건에 대한 예측 정확성 여부와 기억을 회상할 때의 정서 상태가 후견지명 편향 (hindsight bias)에 미치는 영향을 알아보고자 하였다. 이에 valence 축에 따라 긍정적 정서와 부정적 정서를 일으키는 두 가지 음악을 제시하고 두 조건에 대하여 기억에 대한 과잉 확신이 얼마나 달라지는가를 분석하였다. 예측 정확성 여부에 대해서는 실험 결과 데이터 중 예측 일치 조건과 불일치 조건으로 나누어 후견지명 편향에 끼치는 영향과 정서와의 상호작용이 있는가를 분석하였다. 사람들은 예측과 반대되는 결과를 접했을 때 결과에 anchoring하여 기억을 회상하려는 편향이 더욱 커졌으며 부정적인 정서보다 긍정적 정서 상태일 때 후견지명 편향이 더욱 커졌음을 밝혔다. 특히 예측과 상이한 결과 피드백을 받고 긍정적 정서 상태일 때 가장 많은 왜곡 현상을 보였으며, 예측 불일치/ 부정적 정서 조건, 예측 일치/ 긍정적 정서 조건, 예측 일치/ 부정적 정서 조건 순으로 후견지명 편향을 보였다. 이 결과는 정서 상태보다 어떤 사건에 대한 예측 정확성 여부가 후견지명 편향에 더 큰 영향을 준다는 것을 시사한다. 본 연구의 실험실 상황을 통하여 자기와 관련이 없는 중립적 과제를 통해서도 후견지명 편향이 나타남을 알 수 있었다. 특히 그 동안 거의 이루어지지 않았던 정서와 후견지명 편향의 관계를 밝히고, 기존의 예측 정확성에 따른 편향을 설명하는 모델간 논쟁이 많았으나 실험 결과가 motivational model을 지지함을 밝혔음에 의의가 있다.

  • PDF

Prediction of Rice Prices and Search for a Period of Weather Affecting the Prices Based on a Linear Regression Model (선형회귀모델을 사용한 쌀 가격 예측 및 쌀 가격에 영향을 미치는 날씨의 시기 탐색)

  • Choi, Da-jeong;Seo, Jin-kyeong;Ko, Kwang-Ho;Paik, Juryon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.37-38
    • /
    • 2022
  • 농산물의 산지 가격이나 도매가격이 등락하면, 즉시 또는 일정한 시차 이후에 소비자가격도 등락한다. 본 논문에서는 선형회귀모델을 통해 쌀 가격을 예측하고 쌀 가격에 영향을 미치는 날씨의 시기를 찾아보고자 한다. 이에 따라 KAMIS, 기상자료개방포털, KOSIS에서 수집한 날씨, 생산량, 그리고 소비자물가 등락률 데이터를 이용하여 쌀 가격 예측을 수행하고, 날씨 데이터와 쌀 가격 데이터의 날짜 간격을 두어 날씨가 쌀 가격에 영향을 미치는 시기를 알아보았다. 모델 평가 결과, 2개월 간격을 두고 예측한 RMSE가 164.135로 가장 큰 영향을 미쳤다. 본 연구를 기반으로 향후 다른 농산물의 가격 예측도 가능할 것이며 농산물에 영향을 미치는 변수의 시기도 예측할 수 있을 것으로 기대한다.

  • PDF

신경망을 사용한 매도/매수 주식 종목 선정

  • 임도형;이일병
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.247-250
    • /
    • 2000
  • 주가는 시계일 데이터의 일종으로 많은 변수들이 주가의 변동에 영향을 미친다. 그러나 몇 개의 어떠한 변수가, 어떻게 영향을 미치는 지 정확히 알려져 있지 않다. 그렇기 때문에 주가를 예측하는 것은 쉽지 않으며 단지 등락을 예측하는 것 조차도 쉽지 않다. 본 논문에서는 주가를 신호와 잡음이 혼합된 것으로 가정하고 그 특성을 고려하여, 전 종목에 대한 등락을 예측하지 않고, 예측율이 높은 종목을 선정하는 것을 목표로 하였다. MLP를 BP로 학습시켰으면 입력으로는 28개의 주가분석 지표값이 사용되었다. 여러 예측 기간으로 실험하였으며, 예측기간이 60일일 때 77.1%의 예측율을 보였고 선정된 종목의 등락 예측율은 88%였다.

  • PDF

Influence of Patchy Outliers on the Forecast of Winters Seasonal Model (가법계절지수모형에서 예측에 미치는 이상치의 영향)

  • 편영숙;이재준
    • The Korean Journal of Applied Statistics
    • /
    • v.12 no.2
    • /
    • pp.491-503
    • /
    • 1999
  • 시계열자료에는 흔히 대부분의 자료에서 벗어나는 이상치들이 포함되어 있는데, 이러한 자료는 관측치들 사이의 종속구조로 인해 분석과정에 영향을 끼칠 수 있고, 특히 연속시점에서 발생하는 경우에 그 영향이 매우 심각할 수 있다. 본 논문에서는 연속이상치(PO)가 Winters 계절지수모형의 분석과정에 미치는 영향을 유도하고, 예측 평균제곱오차(MSFE)를 구하여 연속이상치가 예측에 미치는 영향을 제시하였다. 또한, 실제자료를 이용하여 연속이상치의 영향을 실증적으로 분석하였다.

  • PDF

Concrete Strength Prediction Neural Network Model Considering External Factors (외부영향요인을 고려한 콘크리트 강도예측 뉴럴 네트워크 모델)

  • Choi, Hyun-Uk;Lee, Seong-Haeng;Moon, Sungwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.7-13
    • /
    • 2018
  • The strength of concrete is affected significantly not only by the internal influence factors of cement, water, sand, aggregate, and admixture, but also by the external influence factors of concrete placement delay and curing temperature. The objective of this research was to predict the concrete strength considering both the internal and external influence factors when concrete is placed at the construction site. In this study, a concrete strength test was conducted on the 24 combinations of internal and external influence factors, and a neural network model was constructed using the test data. This neural network model can predict the concrete strength considering the external influence factors of the concrete placement delay and curing temperature when concrete is placed at the construction site. Contractors can use the concrete strength prediction neural network model to make concrete more robust to external influence factors during concrete placement at a construction site.