• 제목/요약/키워드: 영역 샘플링

Search Result 217, Processing Time 0.048 seconds

Detection of Zebra-crossing Areas Based on Deep Learning with Combination of SegNet and ResNet (SegNet과 ResNet을 조합한 딥러닝에 기반한 횡단보도 영역 검출)

  • Liang, Han;Seo, Suyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • This paper presents a method to detect zebra-crossing using deep learning which combines SegNet and ResNet. For the blind, a safe crossing system is important to know exactly where the zebra-crossings are. Zebra-crossing detection by deep learning can be a good solution to this problem and robotic vision-based assistive technologies sprung up over the past few years, which focused on specific scene objects using monocular detectors. These traditional methods have achieved significant results with relatively long processing times, and enhanced the zebra-crossing perception to a large extent. However, running all detectors jointly incurs a long latency and becomes computationally prohibitive on wearable embedded systems. In this paper, we propose a model for fast and stable segmentation of zebra-crossing from captured images. The model is improved based on a combination of SegNet and ResNet and consists of three steps. First, the input image is subsampled to extract image features and the convolutional neural network of ResNet is modified to make it the new encoder. Second, through the SegNet original up-sampling network, the abstract features are restored to the original image size. Finally, the method classifies all pixels and calculates the accuracy of each pixel. The experimental results prove the efficiency of the modified semantic segmentation algorithm with a relatively high computing speed.

Development of Suspended Sediment Concentration Measurement Technique Based on Hyperspectral Imagery with Optical Variability (분광 다양성을 고려한 초분광 영상 기반 부유사 농도 계측 기법 개발)

  • Kwon, Siyoon;Seo, Il Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.116-116
    • /
    • 2021
  • 자연 하천에서의 부유사 농도 계측은 주로 재래식 채집방식을 활용한 직접계측 방식에 의존하여 비용과 시간이 많이 소요되며 점 계측 방식으로 고해상도의 시공간 자료를 측정하기엔 한계가 존재한다. 이러한 한계점을 극복하기 위해 최근 위성영상과 드론을 활용하여 촬영된 다분광 혹은 초분광 영상을 통해 고해상도의 부유사 농도 시공간분포를 측정하는 기법에 대한 연구가 활발히 진행되고 있다. 하지만, 다른 하천 물리량 계측에 비해 부유사 계측 연구는 하천에 따라 부유사가 비균질적으로 분포하여 원격탐사를 통해 정확하고 전역적인 농도 분포를 재현하기는 어려운 실정이다. 이러한 부유사의 비균질성은 부유사의 입도분포, 광물특성, 침강성 등이 하천에서 다양하게 분포하기 때문이며 이로 인해 부유사는 지역별로 다양한 분광특성을 가지게 된다. 따라서, 본 연구에서는 이러한 영향을 고려한 전역적인 부유사 농도 예측 모형을 개발하기 위해 실내 실험을 통해 부유사 특성별 고유 분광 라이브러리를 구축하고 실규모 수로에서 다양한 부유사 조건에 대한 초분광 스펙트럼과 부유사 농도를 측정하는 실험을 수행하였다. 실제 부유사 농도는 광학 기반 센서인 LISST-200X와 샘플링을 통한 실험실 분석을 통해 계측되었으며, 초분광 스펙트럼 자료는 초분광 카메라를 통해 촬영한 영상에서 부유사 계측 지점에 대한 픽셀의 스펙트럼을 추출하여 구축하였다. 이렇게 생성된 자료들의 분광 다양성을 주성분 분석(Principle Component Analysis; PCA)를 통해 분석하였으며, 부유사의 입도 분포, 부유사 종류, 수온 등과의 상관관계를 통해 분광 특성과 가장 상관관계가 높은 물리적 인자를 규명하였다. 더불어 구축된 자료를 바탕으로 기계학습 기반 주요 특징 선택 알고리즘인 재귀적 특징 제거법 (Recursive Feature Elimination)과 기계학습기반 회귀 모형인 Support Vector Regression을 결합하여 초분광 영상 기반 부유사 농도 예측 모형을 개발하였으며, 이 결과를 원격탐사 계측 연구에서 일반적으로 사용되어 오던 최적 밴드비 분석 (Optimal Band Ratio Analysis; OBRA) 방법으로 도출된 회귀식과 비교하였다. 그 결과, 기존의 OBRA 기반 방법은 비선형성을 증가시켜도 좁은 영역의 파장대만을 고려하는 한계점으로 인해 부유사의 다양한 분광 특성을 반영하지 못하였으며, 본 연구에서 제시한 기계학습 기반 예측 모형은 420 nm~1000 nm에 걸쳐 폭 넓은 파장대를 고려함과 동시에 높은 정확도를 산출하였다. 최종적으로 개발된 모형을 적용해 다양한 유사 조건에 대한 부유사 시공간 분포를 매핑한 결과, 시공간적으로 고해상도의 부유사 농도 분포를 산출하는 것으로 밝혀졌다.

  • PDF

Analysis of Critical Control Points through Field Assessment of Sanitation Management Practices in Foodservice Establishments (현장실사를 통한 급식유헝별 위생관리실태 분석)

  • Kwak Tong-Kyung;Lee Kyung-Mi;Chang Hye-Ja;Kang Yong-Jae;Hong Wan-Soo;Moon Hye-Kyung
    • Korean journal of food and cookery science
    • /
    • v.21 no.3 s.87
    • /
    • pp.290-300
    • /
    • 2005
  • Increased sanitation management of foodservice establishments is required because most of the reported foodborne-disease outbreaks were in the foodservice industry. The purpose of this study was to determine the important control points for good sanitation. In this study, we inspected twenty foodservice establishments in Seoul, Kyunggi, Kyungnam with a self-developed monitoring tool. These foodservice establishments included secondary schools, universities, and industries. Six of them had appointed as the HACCP-certified establishments from the Korea Food and Drug Administration. The inspection was conducted from June to August in 2002. The inspection tool consisted of nine dimensions and sixty-five items. The dimensions were 'personal sanitation', 'supply of raw food', 'food storage', 'handling of raw food and ready-to-eat', 'cleaning and sterilization', 'waste control', 'pest control', and 'control of establishment and equipment' The highest possible score of this inspection tool is 105 points. Statistical data analysis was completed using the SPSS Package(11.0) for descriptive analysis Kruskal-Wallis. The score for the secondary schools (83.6 points) was higher than for the others and number of in compliance item was 50.9 on average. Therefore, we concluded that the secondary schools' sanitation condition was good. The foodservice establishments acquired HACCP certification was 89.7 points, which was significantly higher than that of establishments not applying foodservices in total score. Instituting the HACCP system in a foodservice is very effective for sanitation management. Many out of the compliance observations were found in the dimensions of 'waste control', 'control of establishment and equipment', and 'supply of raw food' 'Clean condition of refrigerator' item was $65\%$ out of the compliance that was the highest percent in this study. 'Notify and observance of heating/reheating temperature' was $45\%$ out of compliance. Items which were over $30\%$ out of compliance were 'sterilization of knifes and chopping boards in cooking', 'education of workers', 'maintain refrigerator temperature blow $5^{\circ}C$', and 'countermeasure of infection workers' In the results, most of the foodservice establishments were poorly managed in temperature control and cross-contamination. The important control points revealed in this study were preventing contamination, cooking temperature compliance, management of raw food and refrigerator. Therefore foodservice establishments should pay attention to education and training about important control points. The systematic sanitation management monitoring tool developed in this study can be effectively applied for conducting self-inspection and improving the sanitary conditions of their own foodservice operations.

Analysis of Quantization Noise in Magnetic Resonance Imaging Systems (자기공명영상 시스템의 양자화잡음 분석)

  • Ahn C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.42-49
    • /
    • 2004
  • Purpose : The quantization noise in magnetic resonance imaging (MRI) systems is analyzed. The signal-to-quantization noise ratio (SQNR) in the reconstructed image is derived from the level of quantization in the signal in spatial frequency domain. Based on the derived formula, the SQNRs in various main magnetic fields with different receiver systems are evaluated. From the evaluation, the quantization noise could be a major noise source determining overall system signal-to-noise ratio (SNR) in high field MRI system. A few methods to reduce the quantization noise are suggested. Materials and methods : In Fourier imaging methods, spin density distribution is encoded by phase and frequency encoding gradients in such a way that it becomes a distribution in the spatial frequency domain. Thus the quantization noise in the spatial frequency domain is expressed in terms of the SQNR in the reconstructed image. The validity of the derived formula is confirmed by experiments and computer simulation. Results : Using the derived formula, the SQNRs in various main magnetic fields with various receiver systems are evaluated. Since the quantization noise is proportional to the signal amplitude, yet it cannot be reduced by simple signal averaging, it could be a serious problem in high field imaging. In many receiver systems employing analog-to-digital converters (ADC) of 16 bits/sample, the quantization noise could be a major noise source limiting overall system SNR, especially in a high field imaging. Conclusion : The field strength of MRI system keeps going higher for functional imaging and spectroscopy. In high field MRI system, signal amplitude becomes larger with more susceptibility effect and wider spectral separation. Since the quantization noise is proportional to the signal amplitude, if the conversion bits of the ADCs in the receiver system are not large enough, the increase of signal amplitude may not be fully utilized for the SNR enhancement due to the increase of the quantization noise. Evaluation of the SQNR for various systems using the formula shows that the quantization noise could be a major noise source limiting overall system SNR, especially in three dimensional imaging in a high field imaging. Oversampling and off-center sampling would be an alternative solution to reduce the quantization noise without replacement of the receiver system.

  • PDF

Identification of Factors Affecting Errors of Velocity Calculation on Application of MLSPIV and Analysys of its Errors through Labortory Experiment (MLSPIV를 이용한 유속산정시 오차요인 규명 및 실내실험을 통한 유속산정오차 분석)

  • Kim, Young-Sung;Lee, Hyun-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.153-165
    • /
    • 2010
  • Large-Scale Particle Image Velocimetry (LSPIV) is an extension of particle image velocimetry (PIV) for measurement of flows spanning large areas in laboratory or field conditions. LSPIV is composed of six elements - seeding, illumination, recording, image transformation, image processing, postprocessing - based on PIV. Possible error elements at each step of Mobile LSPIV (MLSPIV), which is a mobile version of LSPIV, in field applications are identified and summarized the effect of the errors which were quantified in the previous studies. The total number of elemental errors is 27, and five error sources were evaluated previously, seven elemental errors are not effective to the current MLSPIV system. Among 15 elemental errors, four errors - sampling time, image resolution, tracer, and wind - are investigated through an experiment at a laboratory to figure out how those errors affect to velocity calculation. The analysis to figure out the effect of the number of images used for image processing on the velocity calculation error shows that if over 50 images or more are used, the error due to it goes below 1 %. The effect of the image resolution on velocity calculation was investigated through various image resolution using digital camera. Low resolution image set made 3 % of velocity calculation error comparing with high resolution image set as a reference. For the effect of tracers and wind, the wind effect on tracer is decreasing remarkably with increasing the flume bulk velocity. To minimize the velocity evaluation error due to wind, tracers with high specific gravity is favorable.

The development of a bluetooth based portable wireless EEG measurement device (블루투스 기반 휴대용 무선 EEG 측정시스템의 개발)

  • Lee, Dong-Hoon;Lee, Chung-Heon
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.16-23
    • /
    • 2010
  • Since the interest of a brain science research is increased recently, various devices using brain waves have been developed in the field of brain training game, education application and brain computer interface. In this paper, we have developed a portable EEG measurement and a bluetooth based wireless transmission device measuring brain waves from the frontal lob simply and conveniently. The low brain signals about 10~100${\mu}V$ was amplified into several volts and low pass, high pass and notch filter were designed for eliminating unwanted noise and 60Hz power noise. Also, PIC24F192 microcontroller has been used to convert analog brain signal into digital signal and transmit the signal into personal computer wirelessly. The sampling rate of 1KHz and bluetooth based wireless transmission with 38,400bps were used. The LabVIEW programing was used to receive and monitor the brain signals. The power spectrum of commercial biopac MP100 and that of a developed EEG system was compared for performance verification after the simulation signals of sine waves of $1{\mu}V$, 0~200Hz was inputed and processed by FFT transformation. As a result of comparison, the developed system showed good performance because frequency response of a developed system was similar to that of a commercial biopac MP100 inside the range of 30Hz specially.

Reconfiguration of Physical Structure of Vegetation by Voxelization Based on 3D Point Clouds (3차원 포인트 클라우드 기반 복셀화에 의한 식생의 물리적 구조 재구현)

  • Ahn, Myeonghui;Jang, Eun-kyung;Bae, Inhyeok;Ji, Un
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.571-581
    • /
    • 2020
  • Vegetation affects water level change and flow resistance in rivers and impacts waterway ecosystems as a whole. Therefore, it is important to have accurate information about the species, shape, and size of any river vegetation. However, it is not easy to collect full vegetation data on-site, so recent studies have attempted to obtain large amounts of vegetation data using terrestrial laser scanning (TLS). Also, due to the complex shape of vegetation, it is not easy to obtain accurate information about the canopy area, and there are limitations due to a complex range of variables. Therefore, the physical structure of vegetation was analyzed in this study by reconfiguring high-resolution point cloud data collected through 3-dimensional terrestrial laser scanning (3D TLS) in a voxel. Each physical structure was analyzed under three different conditions: a simple vegetation formation without leaves, a complete formation with leaves, and a patch-scale vegetation formation. In the raw data, the outlier and unnecessary data were filtered and removed by Statistical Outlier Removal (SOR), resulting in 17%, 26%, and 25% of data being removed, respectively. Also, vegetation volume by voxel size was reconfigured from post-processed point clouds and compared with vegetation volume; the analysis showed that the margin of error was 8%, 25%, and 63% for each condition, respectively. The larger the size of the target sample, the larger the error. The vegetation surface looked visually similar when resizing the voxel; however, the volume of the entire vegetation was susceptible to error.